M16: Webb zeigt eine Säule mit Sternbildung

Das Bild zeigt eine Staubsäule im Adlernebel, auch M16, im Sternbild Schlange.

Bildcredit: NASA, ESA, CSA, STScI, Bearbeitung und Bildrechte: Mehmet Hakan Özsaraç

Was passiert im Inneren dieses interstellaren Berges? Es entstehen Sterne. Der Berg ist eigentlich eine Säule aus Gas und Staub im malerischen Adlernebel (M16). Eine Säule wie diese hat eine so geringe Dichte, dass man leicht durch sie hindurch fliegen könnte – sie erscheint nur wegen ihres hohen Staubanteils und der großen Tiefe so kompakt.

Neu entstandene Sterne beleuchten die hellen Bereiche von innen heraus. Diese Regionen leuchten in rotem und infrarotem Licht, da der dazwischenliegende interstellare Staub das blaue Licht streut.

Dieses Bild stammt vom James-Webb-Weltraumteleskop (JWST), das Ende des letzten Jahres startete. Es wurde kürzlich beispiellos detailreich in nahem Infrarotlicht aufgenommen. Energiereiches Licht, heftige Winde und finale Supernovae dieser jungen Sterne zerstören in den nächsten 100.000 Jahren langsam diese Sterngeburtssäule.

Astrophysik: Mehr als 2900 Codes in der Quellcodebibliothek für Astrophysik
Zur Originalseite

Das verschmelzende Galaxienpaar IIZw096

Das Bild zeigt die Verschmelzung zweier Galaxien im Sternbild Delfin, abgebildet vom James-Webb-Weltraumteleskop.

Bildcredit: ESA/Webb, NASA und CSA, L. Armus, A. Evans

Dieses Paar verschmelzender Galaxien im Sternbild Delfin ist etwa 500 Millionen Lichtjahre entfernt und leuchtet hell in Infrarotwellenlängen. Im Hintergrund der kosmischen Kollision sind viele noch weiter entfernte Galaxien sowie gelegentlich gezackte Vordergrundsterne zu sehen.

Die Galaxienverschmelzung auf diesem detailreichen Bild des James-Webb-Weltraumteleskops ist etwa 100.000 Lichtjahre breit. Die Bilddaten stammen von Webbs Nahinfrarotkamera (NIRCam) und dem Instrument für mittleres Infrarot (MIRI). Deren kombinierte scharfe Infrarotansicht zeigt die Umstrukturierung in galaktischem Maßstab. Es ist ein wildes Durcheinander staubiger Verschmelzung mit intensiv strahlenden Sternentstehungsgebieten und verzerrten Spiralarmen.

Zur Originalseite

Der Protostern in L1527

Das Bild zeigt Protostern in der dunklen Wolke L1527 mit sanduhrförmigen Flügeln, es stammt vom James-Webb-Weltraumteleskop.

Bildcredit: ForschungNASA, ESA, CSA, STScI, NIRCam; Bearbeitung – Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

Der Protostern in der dunklen Wolke L1527 ist gerade einmal 100.000 Jahre alt und noch in die Wolke aus Gas und Staub eingebettet, die sein Wachstum ermöglicht. Das Bild stammt von der NIRCam des Weltraumteleskops James Webb. Das dunkle Band am Hals des Infrarot-Nebels ist eine dicke Scheibe um das junge stellare Objekt. Diese Scheibe ist etwas größer als unser Sonnensystem und fast genau von der Seite zu sehen. Sie versorgt den Protostern mit Material und verbirgt ihn vor Webbs direkten Infrarotblick.

Der Nebel selbst ist jedoch atemberaubend detailreich abgebildet. Die sanduhrförmigen Hohlräume des Nebels werden vom Infrarotlicht des Protosterns beleuchtet. Sie entstehen durch Materie, die beim Sternbildungsprozess ausgeworfen wird und durch das umgebende Medium pflügt. Wenn der Protostern an Masse gewinnt, wird er schlussendlich ein vollwertiger Stern, der kollabiert, sodass in seinem Inneren die Kernfusion zündet.

Der Protostern in der dunklen Wolke L1527 ist wahrscheinlich ein Analogon zu einem frühen Stadium unserer Sonne und dem Sonnensystem. Er ist etwa 460 Lichtjahre entfernt und liegt in der Taurus-Sternbildungsregion. Webbs NIRCam-Bild umfasst einen Bereich von ungefähr 0,3 Lichtjahre.

Zur Originalseite

Die Säulen der Schöpfung

Das James-Webb-Weltraumteleskop zeigt neue Aufnahmen der Säulen der Schöpfung, die durch Bilder des Weltraumteleskops Hubble berühmt wurden.

Bildcredit: ForschungNASA, ESA, CSA, STScI, NIRCam; Bearbeitung – Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

Ein Bild des Weltraumteleskops Hubble, das inzwischen berühmt ist, zeigt diese sternbildenden Säulen aus kaltem Gas und Staub im Inneren des Adlernebels M16, die mehrere Lichtjahre lang sind. Sie werden als die Säulen der Schöpfung bezeichnet.

Dieses NIRCam-Bild des James-Webb-Weltraumteleskops erweitert Hubbles Erforschung dieser Region im Inneren des kultigen Sternentstehungsgebietes mit mehr Details und Tiefe. Besonders beeindruckend an Webbs Ansichten im nahen Infrarot ist die markante rötliche Emission von Materialknoten, die durch Gravitation kollabieren und im Inneren der Entstehungswolken Sterne bilden.

Der Adlernebel ist etwa 6500 Lichtjahre entfernt. Der größere, helle Emissionsnebel ist ein einfaches Ziel für Fernglas oder kleine Teleskope. M16 liegt in der Ebene unserer Milchstraße in einem nebelreichen Teil des Himmels im geteilten Sternbild Serpens Cauda (Hinterteil der Schlange).

Zur Originalseite

Webb zeigt Staubschichten um WR 140

Das neue James-Webb-Infrarotteleskop zeigt die Staubschalen des Wolf-Rayet-Sterns WR 140.

Bildcredit: NASA, ESA, CSA, JWST, MIRI, ERS Program 1349; Bearbeitung: Judy Schmidt

Was sind diese seltsamen Ringe? Die staubreichen Ringe sind wahrscheinlich dreidimensionale Hüllen, doch wie sie entstanden sind, wird noch erforscht. Wo sie entstanden sind, ist bekannt: in einem Doppelsternsystem im Sternbild Schwan (Cygnus), das etwa 6000 Lichtjahre entfernt ist – ein System, das vom Wolf-Rayet-Stern WR 140 geprägt wird.

Wolf-Rayet-Sterne sind massereich und hell und für ihre stürmischen Winde bekannt. Sie erzeugen und verbreiten außerdem schwere Elemente wie Kohlenstoff, der ein Baustein des interstellaren Staubs ist. Der andere Stern im Doppelsystem ist ebenfalls hell und massereich, aber nicht so aktiv.

Die beiden großen Sterne turnieren in einem länglichen Orbit und nähern sich einander etwa alle acht Jahre. Bei ihrer größten Annäherung nimmt die Röntgenstrahlung des Systems zu, und offenbar wird auch mehr Staub in den Weltraum geschleudert, sodass eine neue Hülle entsteht.

Dieses Infrarotbild des neuen Weltraumteleskops Webb zeigt mehr Details und Staubhüllen als je zuvor.

Zur Originalseite

Eisriese Neptun mit Ringen

Das Bild zeigt eine Aufnahme des Webb-Weltraumteleskops von Neptun mit seinen Ringen und mehreren seiner Monde.

Bildcredit: NASA, ESA, CSA, STScI, NIRCam

Nahe der Mitte dieses scharfen Bildes im nahen Infrarot, das mit dem James-Webb-Weltraumteleskop aufgenommen wurde, seht ihr den Eisriesen Neptun mit seinen Ringen. Die schwach leuchtende, ferne Welt ist der am weitesten von der Sonne entfernte Planet, er ist ungefähr 30 Mal weiter von draußen als der Planet Erde.

Die dunkle, geisterhafte Erscheinung des Planeten auf der atemberaubenden Ansicht von Webb ist auf Methan in der Atmosphäre zurückzuführen, das Infrarotlicht absorbiert. Wolken in großer Höhe, die über den Großteil von Neptuns absorbierendem Methan hinaufreichen, sind im Bild leicht erkennbar.

Neptuns größter Mond Triton, der mit gefrorenem Stickstoff überzogen ist, leuchtet im reflektierten Sonnenlicht heller als Neptun, er ist links oben mit Webbs charakteristischen Beugungsspitzen zu sehen. Zusammen mit Triton sind sieben von Neptuns 14 bekannten Monden im Sichtfeld erkennbar.

Neptuns blasse Ringe treten auf diesem neuen Planetenporträt aus dem Weltraum markant hervor. Details des komplexen Ringsystems sind hier seit dem Besuch der Raumsonde Voyager 2 im August 1989 bei Neptun erstmals wieder zu sehen.

Zur Originalseite

Die Tarantel-Zone

Das Bild ist eine Montage aus Bilddaten von Teleskopen im Weltraum und auf der Erde, es zeigt den Tarantelnebel in der Großen Magellanschen Wolke.

Bildcredit und Bildrechte: Bearbeitung – Robert Gendler; Daten – Hubbles Tarantel-Schatzkammer, Europäische Südsternwarte, James-Webb-Weltraumteleskop, Amateur-Quellen

Der Tarantelnebel ist auch als 30 Doradus bekannt. Die riesige Sternbildungsregion in der Großen Magellanschen Wolke, einer nahen Begleitgalaxie, ist größer als tausend Lichtjahre und ungefähr 180.000 Lichtjahre entfernt. Sie ist die größte und dynamischste Sternbildungsregion, die wir in der gesamten Lokalen Gruppe kennen. Das kosmische Spinnentier nimmt diese prächtige Ansicht ein, es ist eine Montage aus Bilddaten von großen im Weltraum und am Boden stationierten Teleskopen.

Im Inneren der Tarantel (NGC 2070) sorgen intensive Strahlung, Sternwinde und Supernova-Erschütterungen der massereichen Sterne im zentralen jungen Haufen, der als R136 katalogisiert ist, für das Leuchten des Nebels und formen die spinnenartigen Fasern. Um die Tarantel sind weitere Sternbildungsregionen mit jungen Sternhaufen, Fasern und ausgehöhlten blasenförmigen Wolken angeordnet.

Das Bild enthält rechts unten auch den Ort der nächstgelegenen Supernova der Neuzeit, SN 1987A. Das reichhaltige Sichtfeld umfasst ungefähr 2 Grad oder 4 Vollmonde im südlichen Sternbild Schwertfisch. Wenn der Tarantelnebel weniger weit entfernt wäre, zum Beispiel 1500 Lichtjahre wie die Sternbildungsregion Orionnebel in der Milchstraße, würde er den halben Himmel einnehmen.

Zur Originalseite

Tarantel-Sterne R136 von Webb

Das Bild zeigt den Sternhaufen R136 im Infrarotlicht, aufgenommen mit dem Weltraumteleskop Webb. Das vordere Bild ist im nahen Infrarotlicht, während das darüber gelegte Bild im mittleren Infrarotlicht aufgenommen wurde.

Bildcredit und Bildrechte: NASA, ESA, CSA, STScI, Webb-ERO-Produktionsteam

Mitten in einer nahen Sternbildungsregion liegt ein massereicher Haufen, der einige der größten und heißesten Sterne enthält, die wir kennen. Diese Sterne sind kollektiv als Sternhaufen NGC 2070 bekannt und Teil des gewaltigen Tarantelnebels. Sie wurden vom neuen Weltraumteleskop Webb in zwei Arten von Infrarotlicht aufgenommen.

Das Hauptbild zeigt die Sternengruppe im Zentrum von NGC 2070, die als R136 bekannt ist, in nahem Infrarot – das ist Licht, das für die Augen von Menschen nur ein bisschen zu rötlich ist. Im Gegensatz dazu zeigt das überlagerte Bild das Haufenzentrum im mittleren Infrarotlicht, das näher am Radiowellenspektrum liegt. Da die hellsten Sterne in R136 einen größeren Teil ihres Lichtes im nahen Infrarot abstrahlen, leuchten sie auf diesem Bild viel heller. Die massereichen Sterne dieses GMW-Haufens emittieren Teilchenwinde und energiereiches Licht, beides verdampft die Gaswolke, in der sie entstanden sind.

Die gestern veröffentlichten Webb-Bilder zeigen Details von R136 und seiner Umgebung, die nie zuvor zu sehen waren. Diese Details helfen der Menschheit, besser zu verstehen, wie alle Sterne entstehen, sich entwickeln und erlöschen.

Zur Originalseite