GW250114: Rotierende Schwarze Löcher kollidieren

Die Illustration der Künstlerin Aurore Simonnet zeigt ein Schwarzes Loch vor seiner Verschmelzung.

Illustrationscredit: Aurore Simonnet (SSU/EdEon), LVK, URI; LIGO-Arbeitsgemeinschaft

Es war das stärkste Signal von Gravitationswellen, das man je gemessen hat. Was zeigte es? GW250114 wurde Anfang des Jahres von beiden Armen von LIGO in Washington und Louisiana in den USA entdeckt. LIGO steht für Laser Interferometer Gravitational-Wave Observatory. Die Analyse ergab, dass bei dem Ereignis zwei Schwarze Löcher zu einem größeren Schwarzen Loch mit etwa 63 Sonnenmassen verschmolzen. Jedes einzelne hatte davor etwa 33 Sonnenmassen.

Das Ereignis fand zwar rund eine Milliarde Lichtjahre entfernt statt. Doch das Signal war so stark, dass erstmals der Spin aller Schwarzen Löcher genau bestimmt werden konnte. Außerdem wurde besser als je zuvor bestätigt, dass die gesamte Fläche des Ereignishorizonts um das kombinierte Schwarze Loch größer war als die der verschmelzenden Schwarzen Löcher. Genau so wurde es vorhergesagt.

Diese Illustration einer Künstlerin zeigt eine Ansicht aus der Nähe eines Schwarzen Lochs vor der Kollision.

Zur Originalseite

Die doppelt gekrümmte Welt binärer Schwarzer Löcher

Quelle der wissenschaftlichen Visualisierung: NASA, GSFC, Jeremy Schnittman und Brian P. Powell; Text: Francis J. Reddy

Wenn ein Schwarzes Loch seltsam aussieht, wie seltsam sind dann erst zwei? HIer kreist ein Paar supermassereicher Schwarzer Löcher umeinander. Die detaillierte Computeranimation zeigt, wie sich Lichtstrahlen aus ihren Akkretionsscheiben ihren Weg durch die gekrümmte Raumzeit bahnen, die von extremer Gravitation erzeugt wird.

Die simulierten Akkretionsscheiben sind in Falschfarben dargestellt. Rot für die Scheibe um ein Schwarzes Loch mit 200 Millionen Sonnenmassen, Blau für die Scheibe um ein Schwarzes Loch mit 100 Millionen Sonnenmassen. Bei diesen Massen würden allerdings beide Akkretionsscheiben das meiste Licht im Ultraviolett abstrahlen.

Das Video zeigt uns jedes der Schwarzen Löcher gleichzeitig von beiden Seiten. Rotes bzw. blaues Licht von beiden Schwarzen Löchern ist im innersten Ring zu sehen. Dieser Ring wird Photonensphäre genannt. Er liegt nahe an den Ereignishorizonten.

In den vergangenen zehn Jahren entdeckte man Gravitationswellen von kollidierenden Schwarzen Löchern. Doch das Verschmelzen supermassereicher Schwarzer Löcher konnte bisher noch nicht nachgewiesen werden.

Bei der NASA ist Woche der Schwarzen Löcher!

Zur Originalseite

Simulation: Zwei Schwarze Löcher verschmelzen

Illustrationscredit: Projekt zur Simulation extremer Raumzeiten

Entspannen Sie sich und beobachten Sie, wie zwei schwarze Löcher verschmelzen. Inspiriert von der ersten direkten Entdeckung von Gravitationswellen im Jahr 2015, wird dieses Simulationsvideo in Zeitlupe abgespielt, würde aber in Echtzeit etwa eine Drittelsekunde dauern. Auf einer kosmischen Bühne sind die schwarzen Löcher vor Sternen, Gas und Staub platziert. Ihre extreme Schwerkraft bündelt das Licht hinter ihnen zu Einsteinringen, während sie sich spiralförmig annähern und schließlich zu einem einzigen verschmelzen.

Die sonst unsichtbaren Gravitationswellen, die beim schnellen Zusammenwachsen der massiven Objekte entstehen, bewirken, dass das sichtbare Bild innerhalb und außerhalb der Einsteinringe auch nach der Verschmelzung der schwarzen Löcher noch wackelt und schwappt. Die von LIGO entdeckten Gravitationswellen mit der Bezeichnung GW150914 stehen im Einklang mit der Verschmelzung von 2 schwarzen Löchern mit 36-facher und 31-facher Sonnenmasse in einer Entfernung von 1,3 Milliarden Lichtjahren. Das endgültige Schwarze Loch hat die 63-fache Masse der Sonne, wobei die restlichen 3 Sonnenmassen in Energie umgewandelt werden, die in Gravitationswellen abgestrahlt wird.

Heutiger Ereignishorizont: NASA-Woche der Schwarzen Löcher!

Zur Originalseite

Nachricht aus dem Gravitationsuniversum

Die Illustration zeigt die Strahlen von Pulsaren im Bild und links oben ein Paar verschmelzender schwarzer Löcher. Über die Bildmitte verteilt sich ein Gitter, das die Verformung der Raumzeit durch vorbeiziehende Gravitationswellen darstellt.

Illustrationscredit: NANOGrav Physics Frontier Center; Text: Natalia Lewandowska (SUNY Oswego)

Das Nordamerikanische Nanohertz-Observatorium für Gravitationswellen (NANOGrav) beobachtete mit riesigen Radioteleskopen 68 Pulsare. Dabei fand es Hinweise auf Gravitationswellen (GW) im Hintergrund. Dazu wurden kleine Verschiebungen der Zeiten, zu denen die Impulse ankamen, genau vermessen.

Diese Verschiebungen hängen bei einzelnen Pulsaren so zusammen, dass GW die wahrscheinliche Ursache sind. Der GW-Hintergrund entsteht wohl durch Hunderttausende sehr massereicher Doppelsysteme aus Schwarzen Löchern, vielleicht sind es sogar Millionen.

Teams in Europa, Asien und Australien veröffentlichten heute getrennt voneinander ihre Ergebnisse. Bisher maßen die Detektoren LIGO und Virgo GW mit hoher Frequenz, wenn einzelne Paare massereicher Objekte, die umeinander kreisen, verschmolzen sind. Das sind zum Beispiel stellare Schwarze Löcher.

Diese Illustration zeigt so ein Ereignis, das die Raumzeit erschüttert. Hier kreisen zwei sehr massereiche Schwarze Löcher und mehrere Pulsare umeinander. Sie weisen anscheinend leichte Zeitverschiebungen auf. Ein verzerrtes Gitter zeigt den Einfluss der GW auf die Raumzeit.

Offene Wissenschaft: 3000+ Codes in der Quellcodebibliothek für Astrophysik

Zur Originalseite

Animation: Rätselhafte Radiokreise


Videocredit: Illustration: Sam Moorfield; Daten: CSIRO, HST (HUDF), ESA, NASA; Bild: J. English (U. Manitoba), EMU, MeerKAT, DES (CTIO); Text: Jayanne English

Beschreibung: Wie nennt man ein kosmisches Rätsel, das niemand vorhergesehen hat? In diesem Fall sind es rätselhafte Radiokreise (Odd Radio Circles, kurz ORCs). ORC-1 steht für fünf seltsame Objekte, die 2019 zufällig mit dem neuen australischen SKA Pathfinder Radio-Array entdeckt wurden und die nur in Radiofrequenzen zu beobachten sind.

Das letzte Bild im Video enthält Daten des südafrikanischen MeerKAT-Arrays aus dem Jahr 2021, um mehr Details zu zeigen. Die türkis gefärbten Radiodaten wurden mit einer optischen und Infrarot-Karte der Durchmusterung Dunkler Energie kombiniert.

Die animierte künstlerische Darstellung folgt nur einer Idee zum Ursprung der ORCs. Wenn im Zentrum einer Galaxie zwei sehr massereiche Schwarze Löcher verschmelzen, könnten die dabei entstehenden Stoßwellen Ringe aus Radiostrahlung hervorrufen. Diese wachsen, bis sie das Videofeld füllen. Das Videobild wird erweitert, damit die Ausbreitung der ORC zu sehen ist, bis diese etwa eine Million Lichtjahre groß sind.

Glücklicherweise kann das bald verfügbare Square Kilometer Array helfen, dieses und andere vielversprechende Szenarien zu testen.

Zur Originalseite

Neunzig Gravitationswellenspektrogramme und es werden mehr

Spektrogramme von 90 Gravitationswellen-Ereignissen, die mit den Detektoren von LIGO (USA), VIRGO (Europa) und KAGRA (Japan) beobachtet wurden.

Bildcredit: NSF, LIGO, VIRGO, KAGRA, Georgia Tech, Vanderbilt U.; Graphik: Sudarshan Ghonge und Karan Jani

Beschreibung: Jedes Mal, wenn zwei massereiche Schwarze Löcher kollidieren, senden sie ein lautes Zirpen in Form von Gravitationswellen ins Universum. Erst seit sieben Jahren besitzt die Menschheit die Technologie, um dieses ungewöhnliche Zirpen zu hören, aber wir haben seither in den ersten drei Beobachtungsläufen schon etwa 90 davon gehört.

Oben seht ihr die Spektrogramme – Diagramme der Gravitationswellenfrequenz im Zeitverlauf – dieser 90 Ereignisse, die von den riesigen Detektoren von LIGO (USA), VIRGO (Europa) und KAGRA (Japan) beobachtet wurden. Je mehr Energie einer Kollision auf der Erde ankommt, desto heller erscheint diese Kollision auf der Grafik.

Neben vielen wissenschaftlichen Erfolgen bietet dieses Zirpen von Gravitationswellen der Menschheit eine beispiellose Bestandsaufnahme von Schwarzen Löchern und Neutronensternen, aber auch eine neue Methode, um die Wachstumsgeschwindigkeit unseres Universums zu messen.

Für Anfang Dezember 2022 ist ein vierter Gravitationswellen-Beobachtungsdurchlauf mit erhöhter Genauigkeit geplant.

Zur Originalseite

GW200115: Simulation der Verschmelzung eines Schwarzen Lochs mit einem Neutronenstern


Videocredit: Simulation: S.V. Chaurasia (Stockholm U.), T. Dietrich (Potsdam U. & MPIGP); Visualisierung: T. Dietrich (Potsdam U. und MPIGP), N. Fischer, S. Ossokine, H. Pfeiffer (MPIGP)

Beschreibung: Was passiert, wenn ein Schwarzes Loch einen Neutronenstern vernichtet? Analysen lassen den Schluss zu, dass so ein Geschehen das Gravitationswellenereignis GW200115 verursachte, das im Januar 2020 von den Observatorien LIGO und Virgo beobachtet wurde.

Um das ungewöhnliche Ereignis besser zu verstehen, wurde diese Visualisierung aus einer Computersimulation erstellt. Zu Beginn des Visualisierungsvideos kreisen das Schwarze Loch (etwa 6 Sonnenmassen) und der Neutronenstern (etwa 1,5 Sonnenmassen) umeinander und senden dabei eine immer größer werdende Menge an Gravitationsstrahlung aus. Das malerische Muster der Gravitationswellen-Emission ist in Blau dargestellt.

Das Duo nähert sich einander immer schneller auf spiralförmigen Bahnen, bis der Neutronenstern vollständig vom Schwarzen Loch verschlungen wird. Da der Neutronenstern während der Kollision nicht auseinanderbricht, entkommt nur wenig Licht – das passt zum Fehlen eines beobachteten optischen Gegenstücks. Das übrig gebliebene Schwarze Loch schwingt kurz. Sobald das Schwingen abklingt, verebben auch die ausgesendeten Gravitationswellen.

Das 30-sekündige Zeitraffervideo ist scheinbar kurz, doch in Wirklichkeit dauert es etwa 1000-mal so lang wie das echte Verschmelzungsereignis.

Astrophysik: mehr als 2500 Codes in der Astrophysik-Quellcodebibliothek
Zur Originalseite

Fünfzig Gravitationswellen-Ereignisse bildlich dargestellt

Diese Illustration veranschaulicht die Massen der ersten 50 Ereignisse.

Bildcredit: LIGOVirgo-Arbeitsgruppe, Frank Elavsky, Aaron Geller, Northwestern U.

Beschreibung: Mehr als 50 Gravitationswellenereignisse wurden mittlerweile entdeckt. Diese Ereignisse markieren die fernen, gewaltigen Kollisionen von entweder zwei schwarzen Löchern oder einem schwarzen Loch mit einem Neutronenstern oder von zwei Neutronensternen. Die meisten dieser 50 Ereignisse wurden 2019 mit den LIGO-Gravitationswellendetektoren in den USA und dem VIRGO-Detektor in Europa entdeckt.

Diese Illustration veranschaulicht die Massen der ersten 50 Ereignisse. Blaue Punkte zeigen schwarze Löcher mit höherer Masse, während orangefarbene Punkte Neutronensterne mit geringerer Masse kennzeichnen. Astrophysikerinnen und Astrophysiker sind derzeit jedoch nicht sicher, was die Natur von Ereignissen betrifft, die weiß markiert sind, und deren Massen anscheinend in der Mitte liegen – zwischen zwei und fünf Sonnenmassen.

Am Nachthimmel in sichtbarem Licht überwiegen nahe helle Sterne, die seit Anbeginn der Menschheit bekannt sind. Im Gegensatz dazu überwiegen am Gravitationswellenhimmel ferne, dunkle schwarze Löcher, die seit weniger als fünf Jahre bekannt sind.

Dieser Unterschied ist aufschlussreich: Wenn man den Gravitationswellenhimmel versteht, verändert schon das allein das Wissen der Menschheit – nicht nur über Sterngeburt und -tod im ganzen Universum, sondern sogar über die Eigenschaften des Universums selbst.

Zur Originalseite