Energiereiches Teilchen schlägt auf der Erde ein

Die Illustration zeigt eine sehr energiereiche kosmische Strahlung, die in der Erdatmosphäre einen Luftschauer auslöst. Unten ist eine Reihe von Luftschauer-Detektoren zu sehen.

Illustrationscredit: Osaka Metropolitan U./L-INSIGHT, Kyoto U./Ryuunosuke Takeshige

Es war eines der energiereichsten Teilchen, das auf der Erde einschlug, aber woher kam es eigentlich? Wie jede Art kosmischer Strahlung, die auf die Erdatmosphäre trifft, versprühte das nach der ShintoSonnengöttin Amerterasu benannte Teilchen einen Schauer aus Elektronen, Protonen und anderen Elementarteilchen.

Die Abbildung zeigt einen Luftschauer aus kosmischer Strahlung, der auf das Telescope Array in Utah, USA, traf, welches das Amaterasu-Ereignis im Mai 2021 aufzeichnete. Diese durch kosmische Strahlung verursachten Luftschauer sind so häufig, dass man wahrscheinlich selbst schon einmal in so einem Teilchenregen war, ohne es zu merken.

Der Ursprung dieser energiereichen Teilchen wird im Atomkern vermutet, bleibt aber in zweierlei Hinsicht ein Rätsel. Erstens ist nicht klar, woher ein einzelnes Teilchen oder ein Atomkern so dermaßen viel Energie haben kann, und zweitens blieben alle Versuche der Spur des Teilchens zu seinem Ursprung folgen, um Hinweise auf eine mögliche Quelle zu finden, bislang erfolglos.

Offene Wissenschaft: Mehr als 3200 Codes in der Astrophysik-Quellcodebibliothek
Zur Originalseite

Die HESS-Teleskope erforschen den Hochenergie-Himmel

Videocredit und -rechte: Jeff Dai (TWAN), H.E.S.S. Arbeitsgemeinschaft;
Musik: Ibaotu Katalognummer 1044988 (Mit Genehmigung verwendet)

Sie wirken wie moderne mechanische Dinosaurier, doch es sind gewaltige schwenkbare Augen, die den Himmel beobachten. Das Hochenergie-Stereoskopische System (H.E.S.S.) besteht aus vier reflektierende Spiegelteleskope, jeweils 12 Meter groß, diese sind um ein größeres Teleskope mit einem 28-Meter-Spiegel angeordnet.

Die Teleskope wurden so konzipiert, dass sie ein seltsames Flackern in blauem Licht – sogenannte Tscherenkow-Strahlung – aufspüren können. Diese Strahlung entsteht, wenn sich geladene Teilchen etwas schneller bewegen als die Lichtgeschwindigkeit in der Luft. Dieses Licht wird abgestrahlt, wenn ein Gammastrahl von einer fernen Quelle ein Molekül in der Erdatmosphäre trifft und einen Schauer geladener Teilchen auslöst.

H.E.S.S. ist empfindlich für einige Photonen mit sehr hoher Energie (TeV), die das Universum durchqueren. Das System H.E.S.S. ist seit 2003 in Namibia in Betrieb und sucht nach Dunkler Materie. Bisher entdeckte es mehr als 50 Quellen, die energiereiche Strahlung abgeben, zum Beispiel Supernovaüberreste oder die Zentren von Galaxien, die sehr massereiche Schwarze Löcher enthalten.

Die H.E.S.S.-Teleskope wurden im Juni gefilmt. Die Zeitrafferaufnahmen zeigen, wie sie vor dem Hintergrund der Milchstraße und den Magellanschen Wolken schwenken und starren. Gelegentlich zischt ein Satellit im Erdorbit vorbei.

Im Universum surfen: mit dem APOD-Zufallsgenerator
Zur Originalseite

Röntgenringe um einen Gammastrahlenausbruch

Um den Röntgenblitz GRB 221009A ist ein schalenförmiges Lichtecho zu beobachten, das teilweise in unserer Milchstraße liegt und teilweise im fernen Universum.

Bildcredit: NASA Swift Obs.; Daten: B. Cenko (NASA’s GSFC), A. Beardmore (U. Leicester) et al.; Bearbeitung: J. Miller (U. Michigan)

Warum erscheinen Röntgenringe um einen Gammablitz? Die überraschende Antwort hat weniger mit der Explosion selbst zu tun, sondern vielmehr mit dem Licht, das von staubreichen Gasgebieten in unserer Milchstraße reflektiert wird.

GRB 221009A war eine gewaltige Explosion – ein sehr heller Gammablitz (GRB), der im weit entfernten Universum stattfand. Seine Strahlung erreichte letzte Woche unser Sonnensystem. Da GRBs auch größere Mengen Röntgenstrahlen emittieren können, kam fast gleichzeitig mit der Gammastrahlung ein heller Röntgenblitz an.

In diesem Fall prallten die Röntgenstrahlen auch an staubreichen Regionen in unserer Milchstraße ab und verursachten so die ungewöhnlichen Reflexionen. Je größer der Winkel zwischen dem reflektierenden Staub in der Milchstraße und dem GRB ist, desto größer ist der Radius der Röntgenstrahlenringe und desto länger es dauert es typischerweise, bis diese Lichtechos eintreffen.

Zur Originalseite

GRB 221009A

Das Bild zeigt den Gammablitz GRB 221009A, der mit dem Weltraum-Gammastrahlenteleskop Fermi detektiert wurde.

Bildcredit: NASA, DOE, Fermi-LAT-Arbeitsgemeinschaft

Der Gammablitz GRB 221009A kündigt wahrscheinlich die Entstehung eines neuen Schwarzen Lochs an, das vor langer Zeit im fernen Universum im Kern eines kollabierenden Sterns entstanden ist. Diese Animation wurde aus Daten des Fermi-Gammastrahlen-Weltraumteleskops erstellt, sie zeigt die extrem starke Explosion.

Fermi detektierte die Daten in Gammastrahlenenergie und spürte dabei Photonen mit einer Energie von mehr als 100 Millionen Elektronenvolt auf. Im Vergleich dazu haben Photonen in sichtbarem Licht eine Energie von etwa 2 Elektronenvolt. Links verläuft ein stetiges, energiereiches Gammastrahlenleuchten aus der Ebene unserer Milchstraße quer durch das 20 Grad große Bild. In der Mitte erscheint der flüchtige Gammablitz GRB 221009A und verblasst dann wieder. GRB 221009A war einer der hellsten Gammastrahlenausbrüche, die je detektiert wurden. Was Gammablitze betrifft, ist er relativ nahe, doch mit einer Distanz von etwa 2 Milliarden Lichtjahren ist er immer noch weit entfernt.

Fermis Large Area Telescope (LAT) im niedrigen Erdorbit erfasste die Gammastrahlen-Photonen des Ausbruchs in einem Zeitraum von mehr als 10 Stunden, als die energiereiche Strahlung von GRB 221009A letzten Sonntag, dem 9. Oktober, über den Planeten Erde hinwegfegte.

Zur Originalseite

Supernova-Kanone stößt Pulsar J0002 aus

Die Illustration zeigt einen Supernova-Überrest mit einer Linie, die sich nach rechts unten erstreckt und die Spur eines Neutronensterns darstellt.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Kanadische Vermessung der galaktischen Ebene (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Was kann einen Neutronenstern wie eine Kanonenkugel hinausschießen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebeligen Überrest CTB 1 erzeugte, nicht nur einen massereichen Stern, sondern schleuderte außerdem den neu entstandenen Neutronensternkern – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7 Mal pro Sekunde. Er wurde mithilfe der zum Download angebotenen Software Einstein@Home entdeckt. Diese Software durchsucht die Daten des Gammastrahlenobservatoriums Fermi der NASA im Weltraum.

Der Pulsar PSR J0002+6216 (kurz J0002) rast mit mehr als 1000 km pro Sekunde durchs All. Er hat den Supernovaüberrest CTB 1 bereits hinter sich und ist sogar schnell genug, um die Galaxis zu verlassen. Auf diesem Bild ist die Spur des Pulsars gut erkennbar, sie führt vom Supernovaüberrest nach links unten.

Das Bild ist eine Kombination aus Radiobildern der Radioobservatorien VLA und DRAO sowie Archivdaten des Infrarot-Weltraumobservatoriums IRAS der NASA. Wir wissen, dass Supernovae wie Kanonen agieren können, und auch, dass sich Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das zustande bringen.

Zur Originalseite

Galaxie des Schreckens

Geheimnisvolle Dunkle Materie, Friedhofsgalaxie, Zombie-Welten und Gammastrahlenausbrüche des Verderbens.

Poster-Illustration-Credit: NASA, JPL-Caltech, The Galaxy of Horrors

Beschreibung: Heute Abend könnt ihr die extremen und furchterregenden Welten des Universums erkunden. Wenn ihr einen Blick riskiert, sind geheimnisvolle dunkle Materie, eine Friedhofsgalaxie, Zombie-Welten und Gammastrahlenausbrüche des Verderbens noch nicht alles, was euch erwartet.. Folgt einfach dem Link und denkt daran: Es basiert alles auf echter Wissenschaft, sogar die unheimlichen Stellen. Ich wünsche euch ein sicheres und fröhliches Halloween!

Zur Originalseite

SS 433: Doppelstern-Mikroquasar


Animationscredit: DESY, Science Communication Lab

Beschreibung: SS 433 ist eines der exotischsten Sternsysteme, die wir kennen. Sein unscheinbarer Name entstand durch seinen Eintrag in einem Katalog von Milchstraßensternen, die eine für atomaren Wasserstoff charakteristische Strahlung aussenden. Sein auffälliges Verhalten stammt von einem kompakten Objekt – einem schwarzen Loch oder Neutronenstern –, um das sich eine Akkretionsscheibe mit Ausströmungen gebildet hat. Da die Scheibe und die Ausströmungen von SS 433 jenen um sehr massereiche schwarze Löcher in den Zentren ferner Galaxien ähneln, vermutet man, dass SS 433 ein Mikroquasar ist.

Dieses animierte Video basiert auf Beobachtungsdaten. Es zeigt einen massereichen, heißen, normalen Stern, der gemeinsam mit dem kompakten Objekt in einer Umlaufbahn gefangen ist. Zu Beginn des Videos sieht man, wie durch Gravitation Materie vom normalen Stern losgerissen wird, die auf eine Akkretionsscheibe fällt. Der Zentralstern stößt Strahlen aus ionisiertem Gas in entgegengesetzte Richtungen aus – mit jeweils etwa einem Viertel der Lichtgeschwindigkeit.

Im nächsten Abschnitt zeigt das Video eine Aufsicht auf die ausströmenden Strahlen, die eine Präzessionsbewegung ausführen und dabei eine sich ausdehnende Spirale erzeugen. Danach sieht man die sich ausbreitenden Strahlen aus noch größerer Entfernung nahe dem Zentrum im Supernovaüberrest W50.

Vor zwei Jahren fand man mithilfe der HAWC-Detektoranordnung in Mexiko unerwartet heraus, dass SS 433 Gammastrahlen mit ungewöhnlich hoher Energie (im TeV-Bereich) aussendet. Doch es gibt weitere Überraschungen: Eine aktuelle Analyse von Archivdaten des NASASatelliten Fermi zeigt eine Gammastrahlenquelle, die – wie man hier sieht – von den Zentralsternen getrennt ist, und die aus bisher unbekannten Gründen Gammastrahlenpulse mit einer Periode von 162 Tagen aussendet – das entspricht der Präzessionsperiode der Strahlen von SS 433.

Lehrende und Studierende: Ideen für die Verwendung von APOD im Lehrsaal
Zur Originalseite

MAGIC NEOWISE

Hinter den MAGIC-Teleskopen der Europäischen Nordsternwarte auf La Palma steht Komet C/2020 F3 (NEOWISE).

Bildcredit und Bildrechte: Urs Leutenegger

Beschreibung: Die 17 Meter großen MAGIC-Teleskope, die aus vielen Spiegeln bestehen, reflektieren den sternklaren Nachthimmel über der Europäischen Nordsternwarte auf dem Roque de los Muchachos auf der kanarischen Insel La Palma.

MAGIC ist die Abkürzung für Major Atmospheric Gamma Imaging Cherenkov; die Teleskope sehen die kurzen Blitze im sichtbaren Licht, die von Teilchenschauern in der Luft erzeugt werden, wenn energiereiche Gammastrahlung auf die obere Erdatmosphäre trifft. Am 20. Juli suchten zwei der drei Teleskope im Bild nach Gammastrahlen aus dem Zentrum unserer Milchstraße. Sie reflektieren die hellen Sterne von Schütze und Skorpion in der Nähe des Zentrums der Galaxis im Südosten.

Hinter der Anordnung aus Spiegelsegmenten und unter dem Großen Wagen steht Komet NEOWISE über dem nordwestlichen Horizont. NEOWISE ist ein Akronym für Near Earth Object Wide-field Infrared Survey Explorer. Das ist der Satellit im Erdorbit, mit dem der Komet mit der Bezeichnung C/2020 F3 entdeckt wurde, aber das wisst ihr ja.

Komet NEOWISE in Bildern: Juli 23 || 22 || 21 || 20 || 19 || 18 || 17 || 16 || 15 || 14 || 13 || 12 || 11 || 10 und früher

Zur Originalseite