An der Quelle des Goldes

Zwei Himmelskörper sind vor einem dunklen Sternenhimmel dargestellt. Der obere ist dunkel mit goldenen Schlieren, der untere ist von einer strahlenden blauen Korona umgeben.

Illustrationscredit: Dana Berry, NASA

Woher kommt das Gold in eurem Schmuck? Das wissen wir nicht genau. Die durchschnittliche Menge an Gold im Sonnensystem ist anscheinend höher, als dass sie im frühen Universum, in Sternen und sogar bei typischen Supernovaexplosionen entstanden sein könnte.

Schwere Elemente wie Gold enthalten viele Neutronen. Viele glauben, dass sie am ehesten bei seltenen Explosionen entstanden sind, an denen viele Neutronen beteiligt sind. So ein Ereignis wäre, wenn Neutronensterne kollidieren.

Die Illustration zeigt, wie sich zwei Neutronensterne auf einer spiralförmigen Bahn einander näher kommen. Kurz danach kollidieren sie. Wenn Neutronensterne kollidieren, entstehen dabei vielleicht kurze Ausbrüche von Gammastrahlen. Vielleicht habt ihr schon ein Andenken an eine der mächtigsten Explosionen im Universum – in Form von Gold.

Hinweis: Das nächste APOD kommt während der Bekanntgabe einer NSF-Entdeckung mit Pressekonferenz am Montag.

Zur Originalseite

Ein Blitzspektrum der Sonne

Links ist der Mond vom Diamantring der Sonne umgeben. Der Diamantring wurde aus zwei Aufnahmen vom Beginn und Ende der Finsternis zusammengesetzt. Nach rechts ist das Blitzspektrum der Sonne aufgefächert. Es wurde mit einem Beugungsgitter fotografiert. Zwei farbige helle Streifen verlaufen waagrecht neben den Diamantblitzern. Einzelne Sonnenringe zeigen starke Emissionen der Elemente Wasserstoff und Helium.

Bildcredit und Bildrechte: Yujing Qin (Univ. Arizona)

Das bunte Finsterniskomposit wurde am klaren Himmel über Madras in Oregon fotografiert. Es zeigt das flüchtige Blitz-Spektrum der Chromosphäre der Sonne. Das Bild entstand aus drei Aufnahmen vom 21. August. Sie wurden mit Teleobjektiv und Beugungsgitter aufgenommen und justiert.

Die Erscheinung der Sonne erinnert an einen Diamantring. Sie wurde zu Beginn und am Ende der Totalität direkt fotografiert. Der Ring umklammert die Silhouette des Mondes zum Höhepunkt der Finsternis. Die Photosphäre der Sonne wurde vom Beugungsgitter nach rechts zu einem Farbspektrum aufgefächert. Es zeigt zwei durchgehende Streifen. Diese gehen von den Blitzen im Diamantring aus. Die Blitzer sind winzige Splitter der überbordend hellen Sonne.

In jeder Wellenlänge des Lichts erscheinen auch einzelne Bilder der Finsternis. Das Licht dafür strahlen Atome in den schmalen Bögen der Chromosphäre der Sonne ab. Die hellsten Bilder stammen von Atomen des Wasserstoffs. Sie zeigen die stärkste Strahlung in der Chromosphäre. Ganz rechts befindet sich die rote H-alpha-Emission. Links sind die blauen und violetten Emissions-Serien von Wasserstoff aufgereiht.

Die helle, gelbe Emission dazwischen stammt von Heliumatomen. Das Element Helium wurde erstmals im Blitzspektrum der Sonne entdeckt.

Zur Originalseite

Das Blitzspektrum der Sonne

Das Blitzspektrum der Sonne wurde kurz vor Beginn der Totalität fotografiert. Es zeigt die Emissionen der Chromosphäre der Sonne, die nur bei einer Finsternis zu sehen sind.

Bildcredit und Bildrechte: Len Fulham

Das sichtbare Spektrum der Sonne änderte sich blitzartig von Absorption zu Emission. Es geschah am 9. März bei einer totalen Sonnenfinsternis. Der flüchtige Augenblick wurde zu Beginn der Totalität mit Teleobjektiv und einem Beugungsgitter fotografiert. Die Finsternis war über der indonesischen Insel Ternate zu sehen, als der Himmel aufklarte.

Links bedeckt der Mond gerade das grelle Licht der Sonne. Dabei bedeckte er das sonst sichtbare Absorptionsspektrum der Photosphäre. Rechts neben der verfinsterten Sonne fächert ein Diffraktionsgitter den Rest zu einem Farbspektrum auf. Es besteht aus Einzelbildern der Finsternis. Jede Wellenlänge im Licht erzeugt ein Bild. Das Licht wird von den Atomen im dünnen Bogen der Sonnenchromosphäre und in einer gewaltigen Protuberanz oben abgestrahlt.

Die hellsten Bilder und die stärksten Emissionslinien in der Chromosphäre stammen von Wasserstoff-Atomen. Sie erzeugen die rote H-Alpha-Emission ganz rechts und die blaue H-Beta-Emission links. Die hellgelben Emissionsbilder dazwischen stammen von Helium-Atomen. Das Element Helium wurde erstmals im Blitzspektrum der Sonne beobachtet.

Zur Originalseite

Woher kommen Elemente?

Das Bild zeigt das Periodensystem der Elemente. Die Farben zeigen ihre vermutete Entstehung.

Bildcredit: Cmglee (eigene Arbeit) CC BY-SA 3.0 oder GFDL, via Wikimedia Commons

In jedem Wassermolekül in eurem Körper befindet sich Wasserstoff. Er stammt vom Urknall. Im Universum gibt es keine anderen nennenswerten Quellen für Wasserstoff. Der Kohlenstoff in eurem Körper entstand durch Kernfusion im Inneren von Sternen. Auch der Sauerstoff ist so entstanden. Das meiste Eisen in eurem Körper entstand in Supernovae von Sternen. Sie traten vor langer Zeit in weiter Ferne auf.

Das Gold in eurem Schmuck entstand wahrscheinlich bei Kollisionen von Neutronensternen. Sie waren vielleicht als kurze Gammablitze sichtbar. Elemente wie Phosphor und Kupfer sind in unseren Körpern nur in Spuren vorhanden. Sie sind aber lebenswichtig für die Funktion alles bekannten Lebens.

Die Farben des Periodensystems zeigen eine Vermutung, wo alle bekannten Elemente entstanden sind. Die Orte der nuklearen Entstehung von Elementen wie Kupfer sind nicht genau bekannt. Es wird weiterhin durch Beobachtung und Berechnung erforscht.

Ö1-Nachtquartier „In den Himmel schauen und staunen“

Zur Originalseite

Das farbverstärkte Caloris-Becken auf Merkur

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, Johns Hopkins Univ. APL, Arizona State U., CIW

Das weite Caloris-Becken auf Merkur ist eines der größten Einschlagbecken im Sonnensystem. Es entstand in der frühen Geschichte des Sonnensystems beim Impakt eines Körpers, der so groß war wie ein Asteroid. Das facettenreiche rissige Becken ist etwa 1500 Kilometer groß. Es ist auf diesem farbverstärkten Mosaik zu sehen.

Das Mosaik entstand aus Bilddaten der Raumsonde MESSENGER im Merkurorbit. Das Caloris-Becken ist das jüngste große Einschlagbecken auf Merkur.. Es wurde danach mit Lavaschichten gefüllt. Sie sind im Mosaik orangefarben dargestellt. Krater, die nach der Überflutung entstanden sind, hoben Material aus, das unter der Lavaoberfläche lag. Es ist in kontrastierenden blauen Farbtönen dargestellt.

Die jungen Krater bieten wahrscheinlich einen Blick auf das Material, das ursprünglich den Boden bedeckte. Analysen dieser Krater zeigen, dass die vulkanische Lavaschicht 2,5 bis 3,5 Kilometer dick ist. Die orange gefärbten Flecken um das Becken sind vermutlich vulkanische Öffnungen.

Zur Originalseite

Säulen und Strahlen im Pelikannebel

Unten türmt sich eine zinnoberrote Wolke wie ein Berg auf. Rechts oben ragt eine Staubsäule aus dem Nebel. Aus ihrer Spitze verströmt ein junger Stern Strahlen, es ist ein Herbig-Haro-Objekt.

Bildcredit und Bildrechte: Larry Van Vleet (LVVASTRO)

Welche dunklen Strukturen lauern im Pelikannebel?

Der Pelikannebel ist ein vogelförmiger Nebel im Sternbild eines Vogels (Cygnus, der Schwan). Er ist von neu entstandenen Sternen gesprenkelt und mit dunklem Staub befleckt. In den kühlen Atmosphären junger Sterne entstehen rauchgroße Staubkörnchen. Sie werden von Sternwinden und bei Explosionen verteilt.

Rechts verströmt ein Stern eindrucksvolle Herbig-HaroStrahlen. Dabei zerstört er die Staubsäule, die ihn enthält. Sie ist ein Lichtjahr lang.

Das Bild wurde wissenschaftlich gefärbt, um Licht zu betonen, das von kleinen Mengen an ionisiertem Stickstoff, Sauerstoff und Schwefel im Nebel abgestrahlt wird. Der Nebel besteht hauptsächlich aus Wasserstoff und Helium. Der Pelikannebel (IC 5067 und IC 5070) ist etwa 2000 Lichtjahre entfernt. Man findet ihn mit einem kleinen Teleskop nordöstlich vom hellen Stern Deneb.

Zur Originalseite

Felsgebilde Tisdale 2 auf dem Mars

Mitten in dem schwarzweißen Bild ragt ein Felsen auf, der oben weiß bedeckt ist. Vorne links sind Solarpaneele.

Bildcredit: Mars Exploration Rover Mission, Cornell, JPL, NASA

Beschreibung: Warum enthält dieser Felsen auf dem Mars so viel Zink? Vor wenigen Wochen stieß der Roboter-Rover Opportunity, der gerade über den Mars rollt, zufällig auf diesen seltsamen, flachen Stein mit heller Oberfläche. Er ist etwa so groß wie ein geneigter Kaffeetisch und hat auch eine ähnliche Form.

Zu Beginn des letzten Monats erreichte Opportunity den Krater Endeavour. Der Krater ist das größte Oberflächenmerkmal, das er je besucht hat. Opportunity sucht nun an Endeavours Rand nach Hinweisen, wie nass der Mars vor Milliarden Jahren war. Das ungewöhnliche, oben gezeigte Felsgebilde wurde Tisdale 2 genannt.

Letzte Woche wurde es von Opportunity untersucht. Man hält es nun für einen Überrest, der bei dem Einschlag ausgeworfen wurde, der den nahe gelegenen Krater Odyssey bildete. Die chemische Analyse von Tisdale 2 zeigte, dass er ungewöhnlich viel Zink enthält. Der Grund dafür ist derzeit unbekannt, könnte jedoch ein Hinweis auf die Geschichte der ganzen Region sein.

Opportunity findet bereits Felsen, die älter sind als alle, die er zuvor untersucht hatte. Er erkundet nun mehrere weitere eindrucksvolle Felsgebilde, die er bis jetzt nur flüchtig aus der Ferne sehen konnte.

Zur Originalseite

An der Quelle des Goldes

Von oben ragt ein dunkler Himmelskörper mit goldfarbenen Schlieren ins Bild, darunter ist ein kleinerer Körper mit einer blauen und weißen Korona.

Bildcredit: Dana Berry, NASA

Woher stammt das Gold in eurem Schmuck? Niemand weiß das genau. Im Sonnensystem gibt es anscheinend mehr Gold, als im frühen Universum, in den Sternen und sogar bei typischen Supernovaexplosionen entstanden sein kann.

Kürzlich schlugen Forschende eine neue Quelle vor. Sie vermuten, neutronenreiche schwere Elemente wie Gold könnten am leichtesten bei seltenen neutronenreichen Explosionen entstehen. Ein Beispiel ist die Kollisionen von Neutronensternen.

Dieses Bild ist eine künstlerische Illustration. Zwei Neutronensterne kommen einander auf spiralförmigen Bahnen näher. Kurz darauf kollidieren sie. Kollisionen von Neutronensternen wurden auch als Ursprung der kurzen Gammablitze vorgeschlagen. Vielleicht besitzt ihr also schon ein Andenken an eine der mächtigsten Explosionen im Universum!

Zur Originalseite