Dunkle Materie in einem simulierten Universum

Wie ein dunkles Spinnennetz wirken die dargestellten Fäden aus Dunkler Materie im Bild. An den Knotenpunkten leuchten helle Flecken. Das Bild ist eine Illustration.

Illustrationscredit und Bildrechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Spukt es im Universum? In der Karte der Dunklen Materie sieht es zumindest so aus. Die Gravitation der Dunklen Materie ist die Haupterklärung für die schnelle Rotation der Galaxien, für das schnelle Kreisen von Galaxien um Galaxienhaufen, für Gravitationslinsen, die das Licht stark ablenken, und dafür, dass die sichtbare Materie so verteilt ist, wie sie ist. Das gilt sowohl im lokalen Universum als auch für den kosmischen Mikrowellenhintergrund.

Das hier gezeigte Bild stammt aus der Show „Dark Universe“ vom Hayden Planetarium (New York) im Amerikanischen Museum für Naturgeschichte. Dieses Highlight zeigt ein Beispiel, wie allgegenwärtig die Dunkle Materie unser Universum heimsuchen könnte. Das Standbild ist Teil einer detailreichen Computersimulation.

Komplexe Filamente von Dunkler Materie werden hier schwarz dargestellt. Sie sind wie ein Spinnennetz im Universum verteilt. Die relativ seltenen Klumpen von uns bekannter baryonischer Materie dagegen sind orange dargestellt. Diese Simulationen passen statistisch gut zu astronomischen Beobachtungen.

Was möglicherweise etwas erschreckender ist, ist die Tatsache, dass die Dunkle Materie – so seltsam sie auch sein mag in ihrer unbekannten Form – inzwischen nicht mehr als die seltsamste Gravitation im Universum gilt. Dieser Schrecken fällt mittlerweile der Dunklen Energie zu. Dabei handelt es sich um eine gleichmäßige Quelle abstoßender Gravitation, von der man annimmt, dass sie die Expansion des gesamten Universums dominiert.

Zur Originalseite

Illustris simuliert das Universum

Videocredit: Illustris-Arbeitsgemeinschaft, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: Die vergiftete Prinzessin (Media Right Productions)

Wie sind wir hier gelandet? Klickt auf „Play“ klicken, lehnt euch zurück und genießt! Das Video ist eine Computer-Simulation. Sie zeigt die Entwicklung des Universums, die Entstehung von Galaxien und des Orts der Menschen im Universum. Das Illustris-Projekt brauchte 20 Millionen CPU-Stunden. Im Jahr 2014 wurden damit 12 Milliarden Elemente berechnet, die einen Würfel mit der Kantenlänge von 35 Millionen Lichtjahren auflösen. Die Simulation zeigt, wie sich diese Elemente im Raum in 13 Milliarden Jahren entwickelt. Sie folgt der Materie zurück bis zu ihrer Entstehung. Man sieht viele verschiedene Typen von Galaxien.

Im Video entwickelt sich das virtuelle Universum. Ein Teil der Materie, die sich mit dem Universum ausdehnt, wird schnell durch Gravitation gebunden. So entstehen Fasern mit Galaxien und Galaxienhaufen. Das Video zeigt den Blickwinkel einer fiktiven Kamera. Sie kreist um Teile des Universums, die sich verändern. Erst zeigt sie, wie sich Dunkle Materie entwickelt. Später sieht man Wasserstoff, bei dem seine Temperatur mitläuft (0:45). Dann folgen schwerere Elemente wie Helium und Kohlenstoff (1:30) und schließlich Dunkle Materie (2:07).

Links unten läuft die Zeit seit dem Urknall. Rechts oben ist abzulesen, welche Art von Materie gerade gezeigt wird. Explosionen (0:50) in den Zentren von Galaxien stammen von den extrem massereichen Schwarzen Löchern. Sie stoßen Blasen aus heißem Gas aus.

Es gibt interessante Abweichungen der Illustris-Simulation vom realen Universum. Dazu zählt unter anderem, dass bei der Simulation eine größere Häufigkeit alter Sterne entsteht. Die Abweichungen werden untersucht.

Zur Originalseite

Euclid zeigt den Perseus-Galaxienhaufen

Das Bild zeigt viele Galaxien, einige davon sind in einem zentralen Balken zu sehen, der fast horizontal über das Bild verläuft.

Bildcredit und Lizenz: ESA, Euclid, Euclid-Konsortium, NASA; Bearbeitung: Jean-Charles Cuillandre (CEA Paris-Saclay) und Giovanni Anselmi; Text: Jean-Charles Cuillandre

Bühne frei für ein neues Weltraumteleskop: Euclid. Euclid ist mit zwei großen Weitwinkelkameras ausgestattet und beobachtet sowohl im sichtbaren Licht als auch im nahen Infrarot. Um die mehr als 1000 Galaxien des Perseushaufens in einer Entfernung von 250 Millionen Lichtjahren zu erfassen, musste Euclid mit seinem 1,20 Meter durchmessenden Hauptspiegel und seiner scharfen Optik fünf Stunden lang belichten. Mehr als 100.000 Galaxien sind im Hintergrund sichtbar, von denen einige bis zu 10 Milliarden Lichtjahre weit weg sind.

Das neuartige an Euclid ist die Kombination seines großen Gesichtsfelds von der doppelten Fläche des Vollmonds, seiner hohen Winkelauflösung (durch seine 620-Megapixel-Kamera) und der Nutzung des Infrarotbereichs, in dem sowohl Bilder als auch Spektren aufgenommen werden. Euclids erste Himmelsdurchmusterungen werden ein Drittel des Himmels abdecken und über 2 Milliarden Galaxien erfassen. Dadurch wird es möglich zu untersuchen, wie die Dunkle Materie und die Dunkle Energie das Aussehen unseres Universums geprägt haben.

Zur Originalseite

Animation: Rätselhafte Radiokreise


Videocredit: Illustration: Sam Moorfield; Daten: CSIRO, HST (HUDF), ESA, NASA; Bild: J. English (U. Manitoba), EMU, MeerKAT, DES (CTIO); Text: Jayanne English

Beschreibung: Wie nennt man ein kosmisches Rätsel, das niemand vorhergesehen hat? In diesem Fall sind es rätselhafte Radiokreise (Odd Radio Circles, kurz ORCs). ORC-1 steht für fünf seltsame Objekte, die 2019 zufällig mit dem neuen australischen SKA Pathfinder Radio-Array entdeckt wurden und die nur in Radiofrequenzen zu beobachten sind.

Das letzte Bild im Video enthält Daten des südafrikanischen MeerKAT-Arrays aus dem Jahr 2021, um mehr Details zu zeigen. Die türkis gefärbten Radiodaten wurden mit einer optischen und Infrarot-Karte der Durchmusterung Dunkler Energie kombiniert.

Die animierte künstlerische Darstellung folgt nur einer Idee zum Ursprung der ORCs. Wenn im Zentrum einer Galaxie zwei sehr massereiche Schwarze Löcher verschmelzen, könnten die dabei entstehenden Stoßwellen Ringe aus Radiostrahlung hervorrufen. Diese wachsen, bis sie das Videofeld füllen. Das Videobild wird erweitert, damit die Ausbreitung der ORC zu sehen ist, bis diese etwa eine Million Lichtjahre groß sind.

Glücklicherweise kann das bald verfügbare Square Kilometer Array helfen, dieses und andere vielversprechende Szenarien zu testen.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Auf dieser Simulation der Verteilung Dunkler Materie im Universum sind viele dunkle Fasern verteilt. Wir wissen nicht, woraus sie bestehen. Nur die orange gefärbten Knoten sind Materie, wie wir sie kennen.

Illustrationscredit und -rechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Spukt es im Universum? Auf dieser Karte der Dunklen Materie scheint es so. Die Schwerkraft der unsichtbaren Dunklen Materie ist die wichtigste Erklärung dafür, warum Galaxien sich so schnell drehen, warum Galaxien so schnell um Galaxienhaufen kreisen, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie sowohl im lokalen Universum als auch im fernen kosmischen Mikrowellenhintergrund so verteilt ist, wie wir es beobachten.

Dieses Bild stammt aus der Weltraumschau „Dunkles Universum”. Es wurde vom Hayden-Planetarium im Amerikanischen Museum für Naturkunde produziert. Wir sehen in dieser Schau ein mögliches Beispiel dafür, wie allgegenwärtig Dunkle Materie im Universum ist. Das Bild stammt aus einer detailreichen Computersimulation. Im Universum sind komplexe Fasern aus Dunkler Materie wie Spinnweben verteilt. Sie sind schwarz dargestellt. Die relativ seltenen Klumpen aus vertrauter baryonischer Materie sind orange gefärbt. Diese Simulation stimmt statistisch sehr gut mit Beobachtungen aus der Astronomie überein.

Dunkle Materie ist an sich schon ziemlich seltsam. Sie hat eine unbekannte Form. Aber noch gruseliger ist vielleicht, dass sie nicht mehr als die eigenartigste Gravitationsquelle im Universum gilt. Diese Ehre gebührt nun der Dunklen Energie. Sie ist eine gleichförmige Quelle abstoßender Gravitation und bestimmt anscheinend die Ausdehnung des ganzen Universums.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Auf dieser Simulation des Hayden Planetariums scheint Dunkle Materie im Universum häufiger vorzukommen als baryonische Materie.

Illustrationscredit und -rechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Spukt es im Universum? Diese Karte Dunkler Materie lässt das vermuten. Die Gravitation der unsichtbaren Dunklen Materie ist die beste Erklärung dafür, warum Galaxien so schnell rotieren und warum Galaxien auf ihren Bahnen in Galaxienhaufen so schnell sind. Sie erklärt auch, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie sie ist. Das gilt sowohl im lokalen Universum als auch im kosmischen Mikrowellenhintergrund.

Das Bild stammt aus der Weltraumschau „Dunkles Universum”, die schon älter ist. Sie lief im Hayden Planetarium, das sich im Amerikanischen Museum für Naturgeschichte befindet. Das Bild zeigt, wie die Dunkle Materie alles durchdringt und im Universum spuken könnte. Es stammt aus einer detailreichen Simulation mit Computern. Komplexe Fasern aus Dunkler Materie sind wie Spinnweben verteilt. Sie sind schwarz gefärbt. Die relativ wenigen Klumpen aus bekannter baryonischer Materie sind orange dargestellt. Diese Simulationen passen gut zu Beobachtungen aus der Astronomie.

Dunkle Materie ist an sich schon ziemlich seltsam. Ihre Form ist unbekannt. Noch spannender ist vielleicht, dass sie nicht mehr als seltsamste Quelle der Gravitation im Universum gilt. Diese Ehre gebührt der Dunklen Energie. Sie ist eine gleichförmige Quelle abstoßender Gravitation. Anscheinend kontrolliert sie die Ausdehnung des ganzen Universums.

Zur Originalseite

Illustris-Simulation des Universums


Videocredit: Illustris-Arbeitsgruppe, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: The Poisoned Princess (Media Right Productions)

Beschreibung: Woher kommen wir? Klicken Sie hier, lehnen Sie sich zurück und sehen Sie zu. Diese Computersimulation der Entwicklung des Universums zeigt, wie Galaxien entstanden sind, und bietet Einblicke zum Platz der Menschheit im Universum.

Das Illustris-Projekt verbrauchte im Jahr 2014 20 Millionen CPU-Stunden, indem es die Entwicklung von 12 Milliarden Auflösungselementen in einem Zeitraum von 13 Milliarden Jahren und einem Würfel mit einer Seitenlänge von 35 Millionen Lichtjahren verfolgte. Die Simulation erfasst Materie bei der Entstehung einer Vielzahl von Galaxientypen. Während sich das virtuelle Universum entwickelt, kondensiert bald ein Teil der Materie, die mit dem Universum expandiert, durch Gravitation und bildet Fasern, Galaxien und Galaxienhaufen.

Dieses Video zeigt den Blickpunkt einer virtuellen Kamera, die um einen Teil des sich verändernden Universums kreist. Zuerst zeigt es die Entwicklung Dunkler Materie, dann Wasserstoff, der nach Temperatur gekennzeichnet ist (0:45), danach schwere Elemente wie Helium und Kohlenstoff (1:30) und schließlich wieder Dunkle Materie (2:07). Links unten läuft die Zeit ab dem Urknall, rechts unten ist die Art der Materie, die gerade gezeigt wird, gelistet. Explosionen (0:50) zeigen extrem massereiche Schwarze Löcher in Galaxienzentren, die Blasen aus heißem Gas ausstoßen.

Es wurden interessante Unstimmigkeiten zwischen Illustris und dem echten Universum untersucht, einschließlich der Frage, warum die Simulation eine Überfülle alter Sterne erzeugte.

Zur Originalseite

Die lokale Leere im nahen Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: R. Brent Tully (U. Hawaii) et al.

Beschreibung: Wie sieht unsere Region des Universums aus? Da Galaxien so weit über den Himmel verteilt sind, und weil unsere Milchstraße einen Teil des fernen Himmels abdeckt, war es schwierig, das zu beurteilen. Doch nun wurde eine neue Karte erstellt, die aus großräumigen Galaxienbewegungen ableitet, welche massereichen Objekte im nahen Universum gravitativen Einfluss ausüben müssen.

Diese Karte hat eine Seitenlänge von mehr als 600 Millionen Lichtjahren und zeigt, dass unsere Galaxis am Rand des Virgo-Galaxienhaufens liegt, der mit dem großen Attraktor verbunden ist – einer noch größeren Galaxiengruppierung. In der Nähe befinden sich auch der massereiche Koma-Haufen und der ausgedehnte Perseus-Fische-Superhaufen.

Andererseits befinden wir uns auch am Rand einer riesigen Region, die fast frei von Galaxien ist, und die als lokale Leere bekannt ist. Der abstoßende Schub der lokalen Leere, kombiniert mit dem gravitativen Zug zur erhöhten Galaxiendichte auf der anderen Seite des Himmels, erklärt einen Teil der rätselhaft hohen Geschwindigkeit unserer Galaxis vor dem kosmischen Mikrowellenhintergrund – aber nicht zur Gänze.

Wenn Sie das lokale Universum selbst – wie von Cosmicflows-3 beschrieben- erforschen möchten, können Sie diese interaktive 3D-Visualisierung vergrößern und drehen.

Zur Originalseite