Der Vulkan Sakurajima mit Blitz

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Martin Rietze (Fremde Landschaften auf dem Planeten Erde)

Beschreibung: Warum entstehen bei einem Vulkanausbruch manchmal Blitze? Oben wurde der Vulkan Sakurajima im Süden Japans bei einem Ausbruch im Januar 2013 fotografiert. Glühend heiße Magmablasen schossen weg, als flüssiges Gestein von unten die Erdoberfläche durchbrach.

Wegen der Blitze in der Nähe des Vulkangipfelist dieses Bild besonders bemerkenswert. Warum Blitze auftreten – auch bei gewöhnlichen Gewittern -, bleibt ein Thema der Forschung, die Ursache für vulkanische Blitze ist sogar noch rätselhafter. Natürlich gleichen Blitze Bereiche mit entgegengesetzter getrennter elektrischer Ladung aus. Vulkanische Blitze können durch ladungsinduzierende Kollisionen in vulkanischem Staub begünstigt werden.

Blitze treten auf der ganzen Erde häufig auf, meist mehr als 40 Mal pro Sekunde.

Zur Originalseite

Viele Singularitäten im Galaktischen Zentrum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC / Columbia Univ./ C. Hailey et al.

Beschreibung: Eine kürzlich durchgeführte informelle Studie ergab, dass Astronomen noch keinen guten Sammelbegriff für Gruppen Schwarzer Löcher haben. Doch sie brauchen einen.

Die roten Kreise auf diesem Bild des Röntgenobservatoriums Chandra kennzeichnen eine Gruppe mit einem Dutzend Schwarzer Löcher in Doppelsternsystemen. Sie besitzen etwa 5 bis 30 Sonnenmassen und schwärmen in einem Umkreis von ungefähr 3 Lichtjahre um das Zentrum unserer Galaxis mit einem sehr massereiche Schwarzen Loch, das als Sagittarius A* (Sgr A*) bezeichnet wird. Gelbe Kreise kennzeichnen Röntgenquellen, die wahrscheinlich weniger massereiche Neutronensterne oder weiße Zwergsterne in Doppelsternsystemen sind.

Einzelne Schwarze Löcher wären unsichtbar, doch in Doppelsternsystemen sammeln sie Materie von ihrem normalen Begleitstern und erzeugen Röntgenstrahlung. In der Entfernung des galaktischen Zentrums kann Chandra nur die helleren dieser Doppelsysteme mit Schwarzen Löchern als punktförmige Röntgenquellen erkennen – ein Hinweis, dass es dort Hunderte schwächerer Doppelsysteme mit Schwarzen Löchern geben müsste, die noch nicht entdeckt wurden.

Zur Originalseite

NGC 1360: Der Wanderdrosseleiernebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Josep Drudis, Don Goldman

Beschreibung: Diese hübsche kosmische Wolke ist etwa 1500 Lichtjahre entfernt und erinnert in Form und Farbe an ein Wanderdrosselei. Der Nebel ist ungefähr 3 Lichtjahre groß und in das südliche Sternbild Chemischer Ofen sicher eingebettet. Er wird als planetarischer Nebel bezeichnet, stellt jedoch keinen Beginn dar, sondern geht mit einer kurzen Schlussphase in der Entwicklung eines alternden Sterns einher.

Auf diesem Teleskopbild sieht man den Zentralstern von NGC 1360, er ist als Doppelsternsystem bekannt, das wahrscheinlich aus zwei weißen Zwergsternen besteht, die weniger Masse als die Sonne besitzen, aber viel heißer sind. Die intensive und sonst unsichtbare Ultraviolettstrahlung der Zwergsterne hat die Elektronen der Atome im umgebenden Gasmantel abgestreift. Der überwiegend blaugrüne Farbton von NGC 1360 ist die starke Strahlung, die bei der Rekombination von Elektronen mit doppelt ionisierten Sauerstoffatomen entsteht.

Zur Originalseite

Galaxien im Fluss

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Michel Meunier, Laurent Bernasconi, Janus Team

Beschreibung: Große Galaxien wachsen, indem sie kleine verschlingen. Auch unsere Galaxis übt galaktischen Kannibalismus aus und verschluckt kleine Galaxien, die zu nahe kommen und von der Gravitation der Milchstraße erfasst werden. Diese Praxis ist im Universum alltäglich und wird durch dieses auffällige Paar wechselwirkender Galaxien am Ufer des südlichen Sternbildes Eridanusder Fluss – veranschaulicht.

Die große, verzerrte Spirale NGC 1532 ist mehr als 50 Millionen Lichtjahre entfernt und in einen Gravitationskampf mit der Zwerggalaxie NGC 1531 (rechts neben der Mitte) verwickelt, den die kleinere Galaxie am Ende verliert. Die Spirale NGC 1532 ist von der Seite zu sehen und ungefähr 100.000 Lichtjahre groß. Das Paar NGC 1532/1531 ist auf diesem scharfen Bild sehr detailgetreu dargestellt und ähnelt vermutlich einem gut untersuchten System, das aus einer von oben sichtbaren Spirale und einer kleinen Begleiterin besteht und als M51 bekannt ist.

Zur Originalseite

Hubble zeigt den roten Rechtecknebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wie ist der ungewöhnliche Rote Rechtecknebel entstanden? Im Zentrum des Nebels befindet sich ein alterndes Doppelsternsystem, das zwar die Energie für den Nebel liefert, aber – bis jetzt – nicht seine Farben erklärt.

Die ungewöhnliche Form des Roten Rechtecknebels entstand wahrscheinlich durch einen dicken Staubwulst, der den normalerweise kugelförmigen Ausfluss in die Kegelformen drückt, die einander an der Spitze berühren. Weil wir den Staubring von der Seite sehen, scheinen die Begrenzungsränder der Kegelformen ein X zu bilden. Die ausgeprägten Sprossen lassen vermuten, dass der Ausfluss schubweise verläuft.

Die ungewöhnlichen Farben des Nebels sind jedoch weniger gut erklärbar, es gibt Vermutungen, dass sie teilweise von Kohlenwasserstoffmolekülen stammen, die sogar Bausteine für organisches Leben sein könnten.

Der Rote Rechtecknebel liegt ungefähr 2300 Lichtjahre entfernt im Sternbild Einhorn (Monoceros). Der Nebel ist hier sehr detailreich auf einem kürzlich überarbeiteten Bild des Weltraumteleskops Hubble abgebildet. Wenn in wenigen Millionen Jahren bei einem der Zentralsterne der Kernbrennstoff zur Neige geht, wird der Rote Rechtecknebel wahrscheinlich zu einem planetarischen Nebel aufblühen.

Zur Originalseite

Das beobachtbare Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Lizenz: Wikipedia, Pablo Carlos Budassi

Beschreibung: Wie weit können Sie sehen? Alles, was Sie jetzt gerade sehen können und könnten, wenn Ihre Augen alle Arten von Strahlung um Sie herum erkennen würden, ist das beobachtbare Universum.

Im elektromagnetischen Spektrum stammt das Fernste, das für uns sichtbar ist, vom kosmischen Mikrowellenhintergrund aus einer Zeit vor 13,8 Milliarden Jahren, als das Universum undurchsichtig wie dicker Nebel war. Einige Neutrinos und Gravitationswellen, die uns umgeben, kommen sogar von noch weiter draußen, doch die Menschheit hat noch keine Technologie, um sie zu erkennen.

Dieses Bild veranschaulicht das beobachtbare Universum in einem zunehmend kompakteren Maßstab mit Erde und Sonne im Zentrum, umgeben von unserem Sonnensystem, nahen Sternen, nahen Galaxien, fernen Galaxien, Fasern aus früher Materie und der kosmischen Hintergrundstrahlung.

Kosmologen gehen üblicherweise davon aus, dass unser beobachtbares Universum nur der nahe Teil eines größeren Ganzen ist, das als „das Universum“ bezeichnet wird, wo die gleiche Physik gilt. Doch es gibt einige Zeilen beliebter, aber spekulativer Überlegungen, die behaupten, unser Universum wäre Teil eines größeren Multiversums, in dem entweder unterschiedliche Naturkonstanten auftreten, andere physikalische Gesetze gelten, höhere Dimensionen wirken oder in denen es leicht abweichende Versionen unseres Standarduniversums gibt.

Zur Originalseite

Der ungewöhnliche Felsen auf Tychos Gipfel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredits – Hauptbild: NASA, Arizona State U., LRO; Einschub oben: NASA, Arizona State U., LRO; Einschub unten: Gregory H. Revera

Beschreibung: Warum liegt auf Tychos Gipfel ein riesiger Felsblock? Der Krater Tycho auf dem Mond ist eines der am leichtesten erkennbaren Merkmale, die mit bloßem Auge sichtbar sind (Einschub rechts unten). Doch in der Mitte von Tycho (Einschub links oben) befindet sich etwas Ungewöhnliches – ein 120 Meter großer Felsbrocken.

Der Lunar Reconnaissance Orbiter (LRO), welcher den Mond umkreist, fotografierte diesen Brocken im letzten Jahrzehnt bei Sonnenaufgang in sehr hoher Auflösung. Die führende Ursprungshypothese besagt, dass der Felsbrocken bei der gewaltigen Kollision, bei der Tycho vor etwa 110 Millionen Jahren entstand, hochgeschleudert wurde und zufällig nahe der Mitte des neu entstandenen Zentralberges wieder herabfiel.

Im Laufe der nächsten Milliarden Jahre sollten Meteoriteneinschläge und Mondbeben Tychos Zentralberg langsam abtragen, wodurch der Felsblock wahrscheinlich die 2000 Meter zum Kraterboden hinabtaumelt und zerfällt.

Zur Originalseite

Meteore, Flugzeuge und eine Galaxie über dem Bryce Canyon

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Dave Lane

Beschreibung: Manchmal sind Land und Himmel belebt und zugleich schön. Die Landschaft im Vordergrund zeigt den Bryce Canyon in Utah, USA, der für seine vielen interessanten, über Jahrmillionen erodierten Felsformen bekannt ist. Diese fotogene Himmelslandschaft umfasst die gewölbte zentrale Scheibe unserer Milchstraße, drei kurze Streifen vorbeiziehender Flugzeuge am Horizont, mindestens vier lange Streifen, die wahrscheinlich von Meteoren der Eta Aquariiden stammen, sowie viele Sterne, darunter die drei hellen Sterne des Sommerdreiecks.

Das Bild ist ein digitales Panorama, das 2014 aus 12 kleineren Bildern des heutigen Datums erstellt wurde. Gestern und heute erreicht der jährlich wiederkehrende Meteorstrom der Eta Aquariiden seinen diesjährigen Höhepunkt. Ein geduldiger Beobachter kann bei dunklem Himmel und an die Dunkelheit angepassten Augen alle paar Minuten einen Meteor sehen.

Zur Originalseite