Die Wolken im Carinanebel

Der Carinanebel ist als NGC 3372 katalogisiert, er umfasst mehr als 300 Lichtjahre und liegt etwa 7500 Lichtjahre entfernt im Sternbild Schiffskiel.

Bildcredit und Bildrechte: John Ebersole

Beschreibung: Welche Formen lauern im Carinanebel? Die dunklen, bedrohlichen Formen sind eigentlich Molekülwolken, also Knoten aus molekularem Gas und Staub, die so dicht sind, dass sie undurchsichtig wurden. Im Vergleich sind diese Wolken jedoch typischerweise viel weniger dicht als die Erdatmosphäre.

Hier seht ihr ein detailreiches Bild vom Zentrum des Carinanebels. In diesem Teil sind sowohl dunkle als auch farbige Wolken aus Gas und Staub besonders markant. Das Bild wurde Mitte 2016 am Siding Spring Observatory in Australien fotografiert. Der Nebel besteht vorwiegend aus Wasserstoff, der hier grün gefärbt wurde. Dem Bild wurden Farben zugewiesen, sodass Licht, das von Schwefel– und Sauerstoffspuren abgestrahlt wird, rot beziehungsweise blau abgebildet ist.

Der ganze Carinanebel ist als NGC 3372 katalogisiert, er umfasst mehr als 300 Lichtjahre und liegt etwa 7500 Lichtjahre entfernt im Sternbild Schiffskiel. Eta Carinae, der energiereichste Stern im Nebel, war in den 1830er-Jahren einer der hellsten Sterne am Himmel, verblasste dann aber dramatisch.

Zur Originalseite

Ingenuity zeigt Perseverance

Die Flugdrohne Ingenuity auf dem Mars schoss am 25. April dieses scharfe Bild in 5 Metern Höhe.

Bildcredit: NASA, JPL-Caltech, Ingenuity

Beschreibung: Die Flugdrohne Ingenuity schoss am 25. April beim Flug in einer Höhe von 5 Metern dieses scharfe Bild. Bei ihrem zweiten Flug über die Marsoberfläche blickte Ingenuitys Farbkamera zurück zu ihrer aktuellen Basis beim Gebrüder-Wright-Feld und dem Octavia-E.-Butler-Landeplatz, der von den Spuren des Rovers Perseverance am oberen Bildrand markiert ist. Perseverance selbst schaut etwa 85 Meter entfernt von der linken oberen Ecke aus zu. Die Enden von Ingenuitys Landebeinen ragen links und rechts über den Rand des Sichtfeldes der Kamera.

Bei ihrem vierten Flug am 30. April, der Rekorde setzte, sammelte Ingenuity Bilder einer möglichen neuen Landezone, ehe sie zum Gebrüder-Wright-Feld zurückkehrte. Ingenuitys fünfter Flug wäre ein Einwegflug, um das Marsflugzeug zu einem neuen Landeplatz zu bringen und eine neue Phase der operativen Demonstrationsflüge einzuleiten.

Zur Originalseite

Rosarot und der Perigäum-Mond

Dieser Schnappschuss aus Leith bei Edinburgh in Schottland zeigt die Vorderseite des Mondes am klaren blauen Himmel mit Kirschblüten.

Bildcredit und Bildrechte: Alice Ross

Beschreibung: Am 25. April ging kurz vor Sonnenuntergang ein fast voller Mond auf. Dieser Schnappschuss aus Leith bei Edinburgh in Schottland zeigt seine vertraute Vorderseite am klaren blauen Himmel, von Kirschblüten eingerahmt. Manche kennen den Vollmond im April als Ostermond oder rosa Mond.

Die volle Mondphase trat ein, als sich der Mond in der Nähe des Perigäums befand, das ist der erdnächste Punkt auf seiner nicht ganz runden Bahn um den Planeten Erde. Damit war dieser Ostermond einer der nächsten und hellsten Vollmonde des Jahres.

Doch keine Sorge, falls ihr ihn verpasst habt. Am 26. Mai habt ihr die nächste Gelegenheit, um einen Perigäums-Vollmond zu sehen. Den Vollmond im Mai kennen manche als Blumenmond, und er kommt uns sogar etwa 158 Kilometer näher als der Vollmond im April, das sind zirka 0,04% der Erde-Mond-Entfernung beim Perigäum.

Zur Originalseite

Apollo 17: Die Erdsichel

Die Originalfotografie dieses digital restaurierten Bildes, AS17-152-23420, wurde am 17. Dezember 1972 auf der Rückreise der Besatzung von Apollo 17 zur Erde fotografiert.

Bildcredit: Apollo 17, NASA; Restaurierung: Toby Ord

Beschreibung: Unser schöner Planet zeigt sich auf dieser atemberaubenden Fotografie als sonnenbeleuchtete Sichel vor der Schwärze des Weltraums. Aus dieser ungewohnten Perspektive wirkt die Erde klein, und wie bei einem Teleskopbild eines fernen Planeten liegt der ganze Horizont im Sichtfeld.

Besatzungen an Bord der Internationalen Raumstation erfreuen sich an viel näheren Ansichten des Planeten, wie sie der niedrige Erdorbit bietet. Sie umkreisen den Planeten alle 90 Minuten und sehen ein Panorama aus Wolken, Ozeanen und Kontinenten, die unter ihnen vorbeiziehen, sowie in der Ferne einen Teilbogen des Planetenrandes.

Doch dieses digital restaurierte Bild zeigt eine sehr ferne Ansicht, die nur 24 Menschen gesehen haben – Apolloastronauten, die zwischen 1968 und 1972 zum Mond und wieder zurück gereist sind. Die Originalfotografie AS17-152-23420 wurde am 17. Dezember 1972 auf der Rückreise der Besatzung von Apollo 17 fotografiert. Es ist das vorläufig letzte Bild der Erde aus dieser planetaren Perspektive, das von Menschenhand aufgenommen.

Die NASA gedenkt Michael Collins

Zur Originalseite

Polaris und der umgebende Staub

Der Cepheid Polaris mit dem intergalaktischen Flussnebel ist am Himmel der Nordstern oder Polarstern.

Bildcredit und Bildrechte: Bray Falls

Warum wird Polaris Nordstern genannt? Weil Polaris der nächste helle Stern in Richtung der nördlichen Rotationsachse der Erde ist. Weil sich die Erde dreht, rotieren scheinbar alle Sterne um Polaris. Der Polarstern steht immer in derselben nördlichen Richtung. Das macht ihn zum Nordstern.

Nahe der südlichen Rotationsachse der Erde gibt es derzeit keinen hellen Stern, also keinen Südstern. Vor Tausenden Jahren zeigte die Rotationsachse der Erde in eine etwas andere Richtung. Damals war Wega der Nordstern. Polaris ist zwar nicht der hellste Stern am Himmel, aber leicht zu finden, weil er fast genau mit zwei Sternen im Kasten des Großen Wagens in einer Linie liegt.

Polaris steht fast in der Mitte dieses acht Grad breiten Bildes. Es wurde digital bearbeitet, um die umgebenden schwachen Sterne abzublenden und das blasse Gas und den Staub im Integrierten Flussnebels (IFN) hervorzuheben. Polaris ist ein Cepheid. Seine Oberfläche pulsiert langsam, daher ändert sich seine Helligkeit im Laufe einiger Tage langsam um wenige Prozent.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

Animation: Schwarzes Loch vernichtet Stern


Video-Illustrationscredit: DESY, Science Communication Lab

Beschreibung: Was passiert, wenn ein Stern einem Schwarzen Loch zu nahe kommt? Das Schwarze Loch zerreißt ihn – aber wie? Nicht die hohe Gravitationskraft ist das Problem – es sind die Gravitationskraftdifferenzen, die über den Stern hinweg verteilt sind, die zur Zerstörung führen.

Dieses animierte Video veranschaulicht die Auflösung. Am Beginn seht ihr einen Stern, der sich einem Schwarzen Loch nähert. Die Bahngeschwindigkeit nimmt zu, bei der größten Annäherung wird die äußere Atmosphäre des Sterns weggerissen. Ein Großteil der Sternatmosphäre verflüchtigt sich in den Weltraum, aber ein Teil kreist weiterhin um das Schwarze Loch und bildet eine Akkretionsscheibe.

Die Animation zeigt dann die Akkretionsscheibe mit Blick zum Schwarzen Loch. Neben seltsamen visuellen Gravitationslinseneffekten seht ihr sogar die Rückseite der Scheibe. Zuletzt verläuft der Blick einen der Strahlen entlang, die in der Rotationsachse ausgestoßen werden. Theoretische Modelle lassen vermuten, dass diese Strahlen nicht nur energiereiches Gas ausstoßen, sondern auch energiereiche Neutrinos erzeugen – eines davon wurde vielleicht kürzlich auf der Erde beobachtet.

Zur Originalseite

Dreiergruppe im Schützen

Lagunennebel (M8), Trifidnebel (M20) und NGC 6559, drei markante Nebel im Sternbild Schütze.

Bildcredit und Bildrechte: Gabriel Rodrigues Santos

Beschreibung: Diese drei hellen Nebel werden häufig bei Teleskopreisen im Sternbild Schütze und den überfüllten Sternfeldern der zentralen Milchstraße besucht. Charles Messier, ein kosmischer Tourist des 18. Jahrhunderts, katalogisierte zwei davon: Der große Nebel rechts unter der Mitte ist M8, der andere am oberen Bildrand ist der farbenprächtige M20. Die dritte Emissionsregion enthält NGC 6559 links neben M8, diese ist vom größeren Nebel durch eine dunkle Staubbahn getrennt.

Alle drei sind Sternentstehungsgebiete und etwa fünftausend Lichtjahre entfernt. Der über hundert Lichtjahre ausgedehnte M8 heißt auch Lagunennebel. Der landläufige Name von M20 lautet Trifid. Leuchtender Wasserstoff liefert die markante rote Farbe der Emissionsnebel. Doch die blauen Farbtöne, die einen starken Kontrast im Trifid bilden, stammen von Sternenlicht, das an Staub reflektiert wird. Die weite Sternenlandschaft umfasst am Himmel fast 4 Grad oder 8 Vollmonde.

Zur Originalseite

Planetarischer Nebel Mz3: Der Ameisennebel

Der planetarische Nebel Mz3n sieht aus wie einie riesige Weltraumameise.

Bildcredit: R. Sahai (JPL) et al., Hubble-Vermächtnis-Team, ESA, NASA

Beschreibung: Warum ist diese Ameise keine riesige Kugel? Der planetarische Nebel Mz3 wird von einem sonnenähnlichen Stern ausgestoßen, der sicherlich rund ist. Doch warum bildet das ausströmende Gas einen ameisenförmigen Nebel, der eindeutig nicht rund ist?

Zu den Hinweisen zählen vielleicht die hohe Geschwindigkeit von 1000 km/s des ausgestoßenen Gases, die Länge von Lichtjahren der Struktur und der Magnetismus des hier gezeigten Sterns im Zentrum des Nebels. Eine mögliche Erklärung lautet, dass Mz3 einen zweiten, dunkleren Stern verbirgt, der auf einer engen Bahn um den hellen Stern kreist. Eine andere Hypothese besagt, dass die Eigenrotation und die Magnetfelder des Zentralsterns das Gas kanalisieren.

Da der Zentralstern unserer Sonne ähnlich zu sein scheint, hoffen Astronomen, dass ein besseres Verständnis der Geschichte dieser riesigen Weltraumameise nützliche Hinweise auf die wahrscheinliche Zukunft unserer Sonne und Erde liefert.

Zur Originalseite