Jupiter und die Meteore im Sternbild Zwillinge

Über einer nächtlichen Landschaft in Portugal blitzen Meteore über den Himmel. Scheinbar strömen sie alle von einem Punkt in den Zwillingen aus, der nahe beim hellen Stern Kastor liegt. Bei Kastor und Pollux strahlt ein helles Licht, es ist der Planet Jupiter. Am Himmel sieht man außerdem die Milchstraße, rötliche Nebelwolken und ein Nachthimmellicht.

Bildcredit und Bildrechte: David Cruz

Jupiter ist der größte Gasriese in unserem Sonnensystem. Er steht hier als heller Mittelpunkt am Himmel. Das Bild entstand aus 40 Einzelaufnahmen, die aus mehr als 500 Bildern ausgewählt wurden. Auf jeder dieser Aufnahmen wurde nämlich ein Meteor festgehalten! Die Bilder entstanden in Alentejo in Portugal, und zwar in der Nacht vom 13. auf den 14. Dezember, dem Höhepunkt des Meteorstroms der Geminiden. Jedes der ausgewählten Bilder wirkt, als würden die Sternschnuppen von Jupiter ausstrahlen.

Der Punkt, aus dem scheinbar die Meteore strömen, wird als Radiant bezeichnet. Er liegt eigentlich näher beim hellen Stern Kastor im Sternbild Zwillinge. Deshalb trägt dieser Sternschnuppenstrom den Namen Geminiden. Jedenfalls ist der Ursprungskörper dieses Stroms nicht der Gasriese Jupiter, sondern ein steiniges Objekt: der erdnahe Asteroid 3200 Phaethon. Doch seine Umlaufbahn wird vom massereichen Jupiter und den Planeten im inneren Sonnensystem beeinflusst.

Zur Originalseite

Geminiden über schneebedeckten Bergen

Über einer Landschaft mit schneebedeckten Bergen und einem Haus, das hinter einigen Nadelbäumen steht, zischen Meteore über den sternklaren Himmel. Die Bilder, die den Himmel zeigen, wurden lang belichtet. Daher sieht man auch rötliche Nebel, zum Beispiel die Barnardschleife im Sternbild Orion.

Bildcredit und Bildrechte: Tomáš Slovinský

Woher kommen all diese Meteore? Was die Richtung am Himmel betrifft, lautet die pointierte Antwort: aus dem Sternbild Zwillinge (Gemini). Daher kennt man den größten Meteorschauer im Dezember als die Geminiden, denn alle Meteore des Schauers strömen scheinbar von einem Punkt in den Zwillingen aus.

Dreidimensional gesehen stößt der ungewöhnliche Asteroid 3200 Phaethon die Teilchen aus. Sie sind etwa so groß sind wie Sandkörner und folgen einer klar definierten Bahn um unsere Sonne. Der Teil der Bahn, dem die Erde am nächsten kommt, liegt vor dem Sternbild Zwillinge. Wenn also die Erde diese Bahn kreuzt, liegt der Radiant der fallenden Teilchen in diesem Sternbild.

Dieses Bild zeigt ein Komposit aus vielen Fotos. Sie wurden in den letzten Tagen am dunklen Himmel in der Slowakei aufgenommen. Hinten stehen die schneebedeckten Gipfel der Belianske Tatry. Über den Himmel ziehen zahllose helle Meteorspuren der Geminiden. Orion geht über dem Horizont auf. Der helle Stern nahe beim Radianten ist Kastor.

APOD-Rückblick: RJNs Vortrag bei Night Sky Network

Zur Originalseite

Offene Sternenhaufen M35 und NGC 2158

Ein offener Sternhaufen und ein Kugelsternhaufen teilen sich das Bild. Rechts oben ist ein loser offener Sternhaufen mit hellen blauen Sternen, links unten ein kompakter Kugelsternhaufen mit einer Population gelblicher Sterne, die sehr dicht gepackt sind.

Bildcredit und Bildrechte: Evan Tsai, LATTE: Lulin-ASIAA Telescope

In diesem einzelnen, sternenreichen, teleskopischen Blickfeld befinden sich zwei offene Sternhaufen, M35 und NGC 2158. Sie scheinen nebeneinander zu liegen, sind aber innerhalb der Grenzen des Sternbilds Zwillinge (Gemini) angesiedelt.

Mit seinen Sternen, die sich in der oberen rechten Ecke konzentrieren, ist M35 relativ nahe. M35 (auch katalogisiert als NGC 2168) ist nur 2.800 Lichtjahre entfernt und besteht aus etwa 400 Sternen, die sich in einem Durchmesser von etwa 30 Lichtjahren verteilen. Helle, blaue Sterne zeichnen häufig jüngere offene Sternhaufen wie M35 aus, dessen Alter auf 150 Millionen Jahre geschätzt wird.

Unten links ist NGC 2158. Er ist etwa viermal weiter entfernt und viel kompakter als M35 und leuchtet im gelblicheren Licht einer Sternpopulation, die mehr als zehnmal älter ist.

Im Allgemeinen findet man offene Sternhaufen in der Ebene unserer Milchstraße. Ihre Mitgliedssterne sind nur locker durch die Schwerkraft gebunden und werden im Laufe von Milliarden Jahren verstreut, während die offenen Sternhaufen das galaktische Zentrum umkreisen.

Zur Originalseite

Geminiden-Meteore über einem verschneiten Wald

Unter einem Sternenhimmel breitet sich eine verschneite Landschaft aus. Der sehr helle Mond leuchtet rechts oben. Die vielen Streifen sind Meteore, die in der Nacht aufgenommen wurden.

Bildcredit und Bildrechte: Jakub Kuřák

Sternschnuppen fliegen scheinbar aus dem Sternbild Zwillinge heraus! Mitte Dezember ist der Höhepunkt des Sternschnuppenschauers der Geminiden. Daher war dies zu erwarten. Das Bild zeigt über zwei Dutzend Sternschnuppen. Es wurde aus verschiedenen Fotos zusammengesetzt, die Samstag früh in einem verschneiten Wald in Polen aufgenommen wurden.

Die kurzlebigen Leuchterscheinungen sind so hell, dass man sie sogar neben dem fast vollen Mond im rechts oben sieht. Die Strichspuren treffen sich scheinbar alle an einem Punkt, dem Radianten. Er befindet sich bei den hellen Sternen Pollux und Kastor mitten im Bild. Der Sternschnuppenschauer der Geminiden entsteht aus kleinen, nur sandkorngroßen Objekten. Diese hinterlässt der Asteroid 3200 Phaethon auf seiner elliptischen Umlaufbahn im inneren Sonnensystem.

Knobelspiel: Astronomie-Puzzle des Tages

Zur Originalseite

Der Medusa-Nebel

Der rötliche Nebel links oben im Bild erinnert an eine Blüte, die sich nach oben öffnet, oder eine Medusa, deren Arme nach oben reichen.

Bildcredit und Bildrechte: Bruno Rota Sargi

Beim Medusa-Nebel Abell 21 lassen schlangenartige und miteinander verwobene Filamente aus leuchtendem Gas auf den Namen schließen. Der Medusa-Nebel ist ein alter planetarischer Nebel. Er befindet sich etwa 1500 Lichtjahre entfernt im Sternbild Zwillinge.

Wie seine mythologische Namensvetterin geht der Nebel mit einer dramatischen Verwandlung einher. Die Phase eines planetarischen Nebels stellt das Endstadium der Entwicklung von Sternen mit geringer Masse wie der Sonne dar. Sie verwandeln sich von Roten Riesen in heiße weiße Zwergsterne. Dabei stoßen sie ihre äußeren Schichten ab. Die ultraviolette Strahlung des heißen Sterns erzeugt das Leuchten des Nebels.

Der vergehende Stern der Medusa ist der schwache Stern nahe der Mitte der hellen, sichelförmigen Struktur. Auf dieser lang belichteten Teleskopaufnahme reichen schwächere Filamente weit nach links unten. Der Medusa-Nebel hat schätzungsweise einen Durchmesser von über 4 Lichtjahren.

Zur Originalseite

Vertont: Der Supernovaüberrest des Quallennebels

Bildcredit: Röntgen (blau): Chandra (NASA) und ROSAT (ESA); Sichtbares Licht (rot): DSS (NSF); Radio (grün): VLA (NRAO, NSF); Vertonung: NASA, CXC, SAO, K. Arcand; SYSTEM Vertonung: M. Russo, A. Santaguida)

Wie hört sich eigentlich ein Supernovaüberrest an? Schall kann als Dichtewelle eines Mediums verstanden werden. Er kann sich daher nicht im leeren Raum ausbreiten. Mithilfe einer Klanginterpretation können Zuhörer nun auf ganz neue Art und Weise den visuellen Eindruck eines Supernovaüberrests erfahren und verstehen.

Kürzlich wurde der Quallennebel (IC 443) auf recht kreative Weise vertont, wie im obigen Video zu sehen und zu hören ist. Wenn die nach unten laufende Linie im Video einen Stern passiert, hört man das Geräusch eines ins Wasser fallenden Tropfens – passend zum aquatischen Namensgeber des Nebels. Trifft die Linie auf Gas, ertönt ein tiefer Ton für rotes, ein mittlerer Ton für grünes und ein hoher Ton für blaues Gas.

Das Licht der Supernova, aus der der Quallennebel hervorging, ist bereits vor etwa 35 000 Jahren verblasst – als die Menschheit noch in der Steinzeit lebte. Im Laufe der nächsten Millionen Jahre wird sich der Nebel langsam auflösen. Der bei der Supernova entstandene extrem dichte Neutronenstern wird jedoch auf unbestimmt lange Zeit bestehen bleiben.

Zur Originalseite

IC 443: Der Quallennebel

In der Mitte leuchtet ein stark gefaserter, detailreicher quallenförmiger Nebel abgebildet, im Hintergrund sind Sterne und einige weitere Nebel verteilt.

Bildcredit und Bildrechte: David Payne

Warum schwimmt diese Qualle in einem Meer aus Sternen? Der Quallennebel schwebt nahe beim hellen Stern Eta Geminorum (im Bild rechts) durch das All und streckt dabei seine Tentakel von der hellen, gebogenen Emissionszone vom Zentrum aus nach links.

Die kosmische Qualle ist eigentlich Teil des blasenförmigen Supernova-Überrests IC 443. Er ist Staub- und Gaswolke von der Explosion eines massereichen Sterns, die expandiert. Das erste Licht dieser Explosion erreichte die Erde vor mehr als 30.000 Jahren. So wie der Krabbennebel, sein Cousin in astronomischen Gewässern, enthält auch IC 443 einen Neutronenstern. Das ist der Rest eines kollabierten stellaren Kerns.

Der Quallennebel ist etwa 5000 Lichtjahre von uns entfernt. In dieser Distanz wäre dieses Bild etwa 140 Lichtjahren breit.

Zur Originalseite

Geminiden über dem See Nianhu in China

Über einem See strömen zahllose Meteore der Geminiden vom Himmel. Im Hintergrund ist das Sternbild Orion und die Milchstraße zu erkennen.

Bildcredit und Bildrechte: Hongyang Luo

Woher kommen all diese Meteore? Was die Richtung am Himmel betrifft, lautet die Antwort eindeutig: aus dem Sternbild Zwillinge (Gemini). Daher wird der Hauptmeteorstrom im Dezember als Geminiden bezeichnet, denn all seine Meteore kommen scheinbar vom Radianten in den Zwillingen.

Dreidimensional gesehen stößt der ungewöhnliche Asteroid 3200 Phaethon die sandkorngroßen Stücke aus. Diese Stücke folgen einer klar definierten Bahn um unsere Sonne, und der Teil der Bahn, der sich der Erde nähert, liegt vor dem Sternbild Zwillinge. Wenn also die Erde diese Bahn kreuzt, liegt der Radiant der fallenden Stücke in Gemini.

Hier seht ihr ein Komposit aus vielen Bildern, die vor wenigen Tagen am See Nianhu in China bei dunklem Himmel aufgenommen wurden. Das Bild zeigt mehr als 100 helle Meteorspuren des Geminiden-Meteorstroms.

APOD-Jahresrückblick (2023): Vortrag von RJN bei NSN

Zur Originalseite