Fünfzig Gravitationswellen-Ereignisse bildlich dargestellt

Diese Illustration veranschaulicht die Massen der ersten 50 Ereignisse.

Bildcredit: LIGOVirgo-Arbeitsgruppe, Frank Elavsky, Aaron Geller, Northwestern U.

Beschreibung: Mehr als 50 Gravitationswellenereignisse wurden mittlerweile entdeckt. Diese Ereignisse markieren die fernen, gewaltigen Kollisionen von entweder zwei schwarzen Löchern oder einem schwarzen Loch mit einem Neutronenstern oder von zwei Neutronensternen. Die meisten dieser 50 Ereignisse wurden 2019 mit den LIGO-Gravitationswellendetektoren in den USA und dem VIRGO-Detektor in Europa entdeckt.

Diese Illustration veranschaulicht die Massen der ersten 50 Ereignisse. Blaue Punkte zeigen schwarze Löcher mit höherer Masse, während orangefarbene Punkte Neutronensterne mit geringerer Masse kennzeichnen. Astrophysikerinnen und Astrophysiker sind derzeit jedoch nicht sicher, was die Natur von Ereignissen betrifft, die weiß markiert sind, und deren Massen anscheinend in der Mitte liegen – zwischen zwei und fünf Sonnenmassen.

Am Nachthimmel in sichtbarem Licht überwiegen nahe helle Sterne, die seit Anbeginn der Menschheit bekannt sind. Im Gegensatz dazu überwiegen am Gravitationswellenhimmel ferne, dunkle schwarze Löcher, die seit weniger als fünf Jahre bekannt sind.

Dieser Unterschied ist aufschlussreich: Wenn man den Gravitationswellenhimmel versteht, verändert schon das allein das Wissen der Menschheit – nicht nur über Sterngeburt und -tod im ganzen Universum, sondern sogar über die Eigenschaften des Universums selbst.

Zur Originalseite

SS 433: Doppelstern-Mikroquasar


Animationscredit: DESY, Science Communication Lab

Beschreibung: SS 433 ist eines der exotischsten Sternsysteme, die wir kennen. Sein unscheinbarer Name entstand durch seinen Eintrag in einem Katalog von Milchstraßensternen, die eine für atomaren Wasserstoff charakteristische Strahlung aussenden. Sein auffälliges Verhalten stammt von einem kompakten Objekt – einem schwarzen Loch oder Neutronenstern –, um das sich eine Akkretionsscheibe mit Ausströmungen gebildet hat. Da die Scheibe und die Ausströmungen von SS 433 jenen um sehr massereiche schwarze Löcher in den Zentren ferner Galaxien ähneln, vermutet man, dass SS 433 ein Mikroquasar ist.

Dieses animierte Video basiert auf Beobachtungsdaten. Es zeigt einen massereichen, heißen, normalen Stern, der gemeinsam mit dem kompakten Objekt in einer Umlaufbahn gefangen ist. Zu Beginn des Videos sieht man, wie durch Gravitation Materie vom normalen Stern losgerissen wird, die auf eine Akkretionsscheibe fällt. Der Zentralstern stößt Strahlen aus ionisiertem Gas in entgegengesetzte Richtungen aus – mit jeweils etwa einem Viertel der Lichtgeschwindigkeit.

Im nächsten Abschnitt zeigt das Video eine Aufsicht auf die ausströmenden Strahlen, die eine Präzessionsbewegung ausführen und dabei eine sich ausdehnende Spirale erzeugen. Danach sieht man die sich ausbreitenden Strahlen aus noch größerer Entfernung nahe dem Zentrum im Supernovaüberrest W50.

Vor zwei Jahren fand man mithilfe der HAWC-Detektoranordnung in Mexiko unerwartet heraus, dass SS 433 Gammastrahlen mit ungewöhnlich hoher Energie (im TeV-Bereich) aussendet. Doch es gibt weitere Überraschungen: Eine aktuelle Analyse von Archivdaten des NASASatelliten Fermi zeigt eine Gammastrahlenquelle, die – wie man hier sieht – von den Zentralsternen getrennt ist, und die aus bisher unbekannten Gründen Gammastrahlenpulse mit einer Periode von 162 Tagen aussendet – das entspricht der Präzessionsperiode der Strahlen von SS 433.

Lehrende und Studierende: Ideen für die Verwendung von APOD im Lehrsaal
Zur Originalseite

Eine Hitzepunktkarte der Oberfläche des Neutronensterns J0030

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, NICER, CI Lab des GSFC

Beschreibung: Wie sehen Neutronensterne aus? Diese Sterne, die etwa so groß sind wie eine Stadt, waren früher zu klein und zu weit entfernt, um sie aufzulösen.

Kürzlich wurden jedoch erste Karten der Orte und Größen von Hitzepunkten auf der Oberfläche eines Neutronensterns erstellt, indem sorgfältig modelliert wurde, wie die Röntgenhelligkeit des Sterns durch seine schnelle Rotation steigt und fällt. Diese anschauliche Karte basiert auf einem der führenden Modelle. Sie zeigt die Hitzepunkte des Pulsars J0030+0451, der Rest der Sternoberfläche ist mit einem fleckigen Falschfarbenblau aufgefüllt.

J0030 rotiert alle 0,0049 Sekunden um seine Achse und ist etwa 1000 Lichtjahre entfernt. Die Karte wurde aus Daten errechnet, die mit dem Röntgenteleskop Neutron star Interior Composition ExploreR (NICER) der NASA aufgenommen wurden. Dieses Teleskop ist an der Internationalen Raumstation befestigt. Die errechneten Orte der Hitzepunkte überraschen und sind nicht gut erklärbar.

Weil der Gravitationslinseneffekt von Neutronensternen so stark ist, sieht man von der Erde aus mehr als die Hälfte der Oberfläche von J0030. Untersuchungen des Erscheinungsbildes von Pulsaren wie J0030 erlaubt eine genaue Abschätzung von Masse und Radius sowie der internen Physik des Neutronensterns, die verhindert, dass der Stern zu einem Schwarzen Loch implodiert.

Zur Originalseite

Seltsames Signal zeigt Zerstörung eines Neutronensterns durch Schwarzes Loch


Illustrations-Videocredit: NASA, Dana Berry (Skyworks Digital)

Beschreibung: Was löste diese ungewöhnliche Explosion aus? Vor drei Wochen erfassten Gravitationswellendetektoren in den USA und Europa – die LIGO– und Virgo-Detektoren – einen Ausbruch an Gravitationswellen. Die Wellenform entsprach dem, was man erwarten würde, wenn ein Schwarzes Loch einen Neutronenstern zerstört. Ein Objekt des Ereignisses S190814sv passte am besten zu einer mehr als fünffachen Masse der Sonne – das machte es zu einem guten Kandidaten für ein Schwarzes Loch. Das andere Objekt hat anscheinend weniger als drei Sonnenmassen, weshalb es ein guter Kandidat für einen Neutronenstern ist.

Noch nie zuvor wurden bei einem ähnlichen Ereignis Gravitationswellen entdeckt. Leider war bei dieser Explosion kein Licht zu sehen, das von dem zerreißenden Neutronenstern stammen hätte können. Es ist theoretisch möglich, dass auch das Objekt mit geringerer Masse ein Schwarzes Loch war, doch es ist kein eindeutiges Beispiel eines Schwarzen Lochs mit einer so geringen Masse bekannt.

Dieses Video wurde erstellt, um eine zuvor vermutete Kollision zwischen einem Schwarzen Loch und einem Neutronenstern zu veranschaulichen, die 2005 durch Strahlung entdeckt wurde, insbesondere Gammastrahlen vom Ausbruch GRB 050724. Das animierte Video beginnt mit einem Neutronenstern im Vordergrund, der ein Schwarzes Loch umrundet, das von einer Akkretionsscheibe umgeben ist. Die Gravitation des Schwarzen Lochs zerreißt dann den Neutronenstern. Sobald Teile in das Schwarze Loch fallen, entsteht ein Strahl.

S190814sv wird weiterhin untersucht, wobei Hinweise auf die Natur der beteiligten Objekte vielleicht von künftigen Entdeckungen ähnlicher Systeme stammen werden.

Zur Originalseite

NICER bei Nacht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, NICER

Beschreibung: Der Neutron Star Interior Composition Explorer (NICER), eine Nutzlast an Bord der Internationalen Raumstation, dreht und wendet sich, um kosmische Röntgenquellen zu verfolgen, während die Station alle 93 Minuten den Planeten Erde umkreist. Auf der Nachtseite der Bahn bleiben die Röntgendetektoren eingeschaltet. Während NICER also von Ziel zu Ziel schwenkt, werden die hellen Bögen und Schleifen dieser Ganzhimmelskarte gezogen, die aus NICER-Daten von 22 Monaten erstellt wurde.

Die Bögen laufen tendenziell an markanten hellen Stellen zusammen – es sind Pulsare am Röntgenhimmel, die NICER regelmäßig erfasst und überwacht. Pulsare sind rotierende Neutronensterne, die getaktete Röntgenpulse abgeben. Ihr Takt ist so präzise, dass sie zur Navigation verwendet werden – zur Bestimmung von Geschwindigkeit und Position von Raumfahrzeugen. Die Koordinaten dieser NICER-Röntgenkarte des ganzen Himmels sind so gewählt, dass der Himmelsäquator waagrecht in der Mitte verläuft.

Zur Originalseite

Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Daten: Steve Milne und Barry Wilson, Bearbeitung: Steve Milne

Beschreibung: Dieses faszinierende Teleskopsichtfeld zeigt den blassen, schwer fassbaren Quallennebel. Die Szenerie ist ein Mosaik aus zwei Bildfeldern, sie wurde aus Schmalband-Bilddaten konstruiert, bei denen die Emissionen von Schwefel-, Wasserstoff- und Sauerstoffatomen in roten, grünen und blauen Farbtönen abgebildet sind.

Links und rechts ist das Bild an den hellen Sternen Mu und Eta Geminorum am Fuß der himmlischen Zwillinge verankert. Der Quallennebel selbst liegt rechts neben der Mitte, er ist der etwas hellere gewölbte Emissionsgrat mit baumelnden Tentakeln. Eigentlich ist die kosmische Qualle Teil des blasenförmigen Supernovaüberrestes IC 443, dieser ist die expandierende Trümmerwolke eines massereichen Sterns, der explodierte. Das Licht der Explosion erreichte den Planeten Erde erstmals vor mehr als 30.000 Jahren.

Wie sein Cousin in astrophysikalischen Gewässern, der Krebsnebel-Supernovaüberrest, enthält auch der Quallennebel einen Neutronenstern, das ist der Überrest des kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt das linke obere Feld. Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Entfernung umfasst das Bild etwa 300 Lichtjahre.

Zur Originalseite

Der einsame Neutronenstern im Supernovaüberrest E0102-72.3

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: (NASA/CXC/ESO/F. Vogt et al.); Optisch: (ESO/VLT/MUSE und NASA/STScI)

Beschreibung: Warum sitzt dieser Neutronenstern nicht in der Mitte? Vor einiger Zeit wurde ein einsamer Neutronenstern in den Trümmern einer alten Supernovaexplosion entdeckt. Der „einsame Neutronenstern“, um den es geht, ist der blaue Punkt in der Mitte des roten Nebels links unten in E0102-72.3.

Auf diesem Bildkomposit ist Röntgenlicht, das vom Chandra-Observatorium der NASA fotografiert wurde, blau abgebildet, während optisches Licht, das mit dem Very Large Telescope der ESO in Chile und dem Weltraumteleskop Hubble der NASA im Orbit fotografiert wurde, rot und grün dargestellt wird.

Die versetzte Position dieses Neutronensterns ist unerwartet, da der dichte Stern vermutlich der Kern jenes Sterns ist, der als Supernova explodierte und den äußeren Nebel bildete. Es wäre möglich, dass der Neutronenstern in E0102 durch die Supernova selbst aus der Mitte des Nebels gestoßen wurde, doch dann wäre es seltsam, dass der kleinere rote Ring auf den Neutronenstern zentriert bleibt. Alternativ könnte der äußere Nebel durch ein anderes Szenario entstanden sein – vielleicht sogar unter Einfluss eins anderen Sterns. Künftige Beobachtungen der Nebel und des Neutronensterns werden das Rätsel wahrscheinlich lösen.

Zur Originalseite

Fermis Wissenschaftsfinalisten

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Mit der Fermi-Wissenschaftsstichwahl feiern wir 10 Jahre Forschung im Hochenergieuniversum mit dem Gammastrahlen-Weltraumteleskop Fermi. Diese beiden Finalisten haben alle früheren Abstimmungsrunden im Wettbewerb gewonnen und treten als letzte gegeneinander an.

Die beiden digitalen Illustrationen aus einer Liste mit Fermis 16 interessantesten Entdeckungen sind die Spitzenkandidaten des Wettbewerbs, sie setzten sich im Semifinale gegen den 12. Kandidaten „Neue Hinweise auf Dunkle Materie“ und den 14. „Sternbeben in einem Magnetarsturm“ durch. Links sind neu entdeckte, unvorhergesagte Gammastrahlenblasen über und unter der Ebene unserer Milchstraße mit einem Durchmesser von 25.000 Lichtjahren abgebildet. Rechts kollidieren gewaltsam verschmelzende Neutronensterne des ersten Gravitationswellenereignisses, das je durch Gammastrahlen entdeckt wurde.

Wählen Sie eins der Bilder und geben Sie hier Ihre Stimme ab, um das beliebteste wissenschaftliche Ergebnis aus Fermis erster Dekade zu wählen.

Zur Originalseite