Schärfere Ansicht der Spiralgalaxie M74

Die prächtige Spiralgalaxie Messier 74, auch NGC 628 im Sternbild Fische, zeigt viele Details, die auf früheren Aufnahmen nur angedeutet waren.

Bildcredit: NASA, ESA, CSA, STScI; Bearbeitungs-Bildrechte: Robert Eder

Die prächtige Spiralgalaxie Messier 74 ist auch als NGC 628 bekannt und liegt etwa 32 Millionen Lichtjahre entfernt im Sternbild Fische. Das Inseluniversum besitzt ungefähr 100 Milliarden Sternen und zwei markante Spiralarme. Astronom*innen sehen in M74 schon lange ein perfektes Beispiel einer klassischen Spiralgalaxie.

Die Zentralregion von M74 wurde auf diesem kürzlich bearbeiteten Bild mit öffentlich verfügbaren Daten des Weltraumteleskops James Webb in einen klaren, scharfen Fokus gerückt. Die gefärbte Kombination von Bilddatensätzen stammt von den beiden Webb-Instrumenten NIRcam und MIRI, die in nahen und mittleren Infrarotwellenlängen arbeiten. Es zeigt kühlere Sterne und staubige Strukturen in der klassischen Spiralgalaxie, die auf bisherigen Weltraumaufnahmen nur angedeutet waren.

Zur Originalseite

Webb zeigt Jupiter und Ring in Infrarot

Das Bild zeigt Jupiter im infraroten Licht, aufgenommen vom vom Weltraumteleskop James Webb aufgenommen wurde. Man sieht die Wolken, den Großen Roten Fleck, der hell erscheint, und einen auffälligen Ring um den Riesenplaneten.

Bildcredit: NASA, ESA, CSA, STScI; Bearbeitung und Lizenz: Judy Schmidt

Warum hat Jupiter Ringe? Jupiters Hauptring wurde 1979 von der vorbeifliegenden Raumsonde Voyager 1 der NASA entdeckt, doch sein Ursprung war damals ein Rätsel. Daten der NASA-Raumsonde Galileo, die von 1995 bis 2003 um Jupiter kreiste, bestätigten jedoch die Vermutung, dass dieser Ring durch Meteoroiden-Einschläge auf kleinen, nahe gelegenen Monden entsteht. Wenn zum Beispiel ein kleiner Meteoroid den winzigen Metis trifft, bohrt er sich in den Mond, verdampft und schleudert Schmutz und Staub in einen Orbit um Jupiter.

Dieses Bild des Weltraumteleskops James Webb von Jupiter in Infrarotlicht zeigt nicht nur Jupiter und seine Wolken, sondern auch diesen hellen Ring. Rechts seht ihr Jupiters großen Roten Fleck (GRF) in vergleichsweise hellen Farben, links Jupiters großen Mond Europa in der Mitte von Beugungsspitzen, Europas Schatten fällt neben den GRF. Einige Strukturen im Bild sind noch nicht gut erforscht, unter anderem die scheinbar getrennte Wolkenschicht an Jupiters rechtem Rand.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995)
Deutsche Übersetzung ab 2007
Zur Originalseite

Stephans Quintett von Webb, Hubble und Subaru

Dieses Bild von vier Galaxien in Stephans Quintett entstand aus Bildern der Weltraumteleskope Hubble und James Webb sowie dem Subaru-Teleskop auf Hawaii.

Bildcredit: Webb, Hubble, Subaru; NASA, ESA, NOAJ; Bearbeitung und Bildrechte: Robert Gendler

Warum sollte man nicht Bilder von Webb und Hubble kombinieren können? Man kann, und dieses Bild zeigt das eindrucksvolle Ergebnis. Zwar ist der Spiegel des kürzlich gestarteten Weltraumteleskops James Webb (Webb) größer als der von Hubble, doch es ist auf Infrarotlicht spezialisiert und kann daher kein Blau sehen – es sieht nur bis Orange.

Umgekehrt hat das Weltraumteleskop Hubble (Hubble) einen kleineren Spiegel als Webb, und es sieht nicht so weit ins Infrarote wie Webb. Dafür kann aber nicht nur blaues Licht abbilden, sondern sogar Ultraviolett. Somit können Daten von Webb und Hubble zu Bildern mit einer größeren Vielfalt an Farben kombiniert werden.

Dieses Bild von vier Galaxien in Stephans Quintett verwendet Bilder von Webb in Rot und enthält auch Bilder des bodenbasierten japanischen Subaru-Teleskops auf Hawaii. Da die Bilddaten von Webb, Hubble und Subaru frei zugänglich gemacht wurden, können sie von allen Menschen weltweit bearbeiten werden. Dabei können sogar eindrucksvolle und wissenschaftlich nützliche Montagen aus Daten von mehreren Observatorien entstehen.

Neue Bilder von Stephans Quintett von Webb und Hubble
Zur Originalseite

Webb zeigt den südlichen Ringnebel

Der südliche Ringnebel - ein planetarischer Nebel im Sternbild Segel des Schiffs - wurde mit dem Weltraumteleskop James Webb fotografiert.

Bildcredit: NASA, ESA, CSA, STScI, NIRCam

Der Südliche Ringnebel ist als NGC 3132 katalogisiert. Er ist ein planetarischer Nebel, die letzte Hülle eines vergehenden sonnenähnlichen Sterns, der etwa 2500 Lichtjahre von der Erde entfernt ist. Die faszinierende kosmische Landschaft aus Gas und Staub ist fast ein halbes Lichtjahr groß und wurde beispiellos detailreich vom Weltraumteleskop James Webb abgebildet.

Der helle Stern in der Mitte des NIRCam-Bildes ist ein Begleiter des sterbenden Sterns. Die beiden Sterne befinden sich in einem gemeinsamen Orbit. Der Stern, dessen Transformation im Laufe Tausender Jahre die Gas- und Staubhüllen des Nebels ausgeworfen hat, ist der blassere stellare Partner, er entwickelt sich zu einem Weißen Zwerg.

Der blasse Stern liegt an der Beugungsspitze, die sich zur 8-Uhr-Position ausdehnt. Die Bahnbewegung dieses Sternpaares führte zu den komplexen Strukturen im Südlichen Ringnebel.

Zur Originalseite

Webbs erstes Deep Field

Tiefenfeld-Aufnahme des Weltraumteleskops James Webb im südlichen Sternbild Fliegender Fisch

Bildcredit: NASA, ESA, CSA, STScI, NIRCam

Dieses ist das detailreichste, schärfste Infrarotbild des Kosmos, das bisher gemacht wurde. Der Blick auf das frühe Universum im südlichen Sternbild Fliegender Fisch entstand im Laufe von 12,5 Stunden Belichtungszeit mit dem Instrument NIRCam am Weltraumteleskop James Webb.

Die Sterne mit je sechs Zacken liegen weit innerhalb unserer Milchstraße. Diese Beugungsmuster sind charakteristisch für Webbs 18 sechseckige Spiegelsegmente, die zusammen wie ein einziger, 6,5 Meter großer Primärspiegel agieren.

Die Tausenden Galaxien, welche das Sichtfeld füllen, gehören zum etwa 4,6 Milliarden Lichtjahre entfernten Galaxienhaufen SMACS0723-73. Die leuchtenden Bögen, die das detailreiche Bild regelrecht übersäen, sind noch weiter entfernte Galaxien. Ihre Bilder werden durch die Masse des Galaxienhaufens, die von Dunkler Materie bestimmt wird, verzerrt und vergrößert. Dieser Effekt ist als Gravitationslinslinseneffekt bekannt.

Wenn man das Licht der beiden getrennten Bögen unter dem hellen, gezackten Stern mit Webbs Instrument NIRISS untersucht, legt das zur Vermutung nahe, dass beide Bögen Bilder derselben Hintergrundgalaxie sind. Das Licht dieser Galaxie brauchte etwa 9,5 Milliarden Jahre, um das Weltraumteleskop James Webb zu erreichen.

Zur Originalseite

2MASS J17554042+6551277

Dieses Bild von 2MASS J17554042+6551277 zeigt die präzise Ausrichtung der Spiegelsegmente des James-Webb-Weltraumteleskops.

Bildcredit: NASA, STScI, JWST

Beschreibung: 2MASS J17554042+6551277 geht nicht leicht über die Lippen, doch es ist die auf Koordinaten basierende Katalog­bezeichnung des Sterns in der Mitte dieses scharfen Blickfeldes. Wenn ihr das ferne Universum liebt, solltet ihr euch an die gezackte Erscheinung gewöhnen.

Das Beugungsmuster stammt von den 18 sechseckigen Spiegelsegmenten des James-Webb-Weltraumteleskops. Nach der Entfaltung wurden die Segmente so justiert, dass die in Infrarot beugungsbegrenzt ausgerichtet sind und gleichzeitig als einziger Primärspiegel mit einem Durchmesser von 6,5 Metern zusammenspielen. Dieses Bild wurde mit Webbs NIRcam aufgenommen. Es zeigt, dass die präzise Ausrichtung das Beste ist, was die Physik zulässt.

2MASS J17554042+6551277 ist ungefähr 2000 Lichtjahre entfernt und liegt in unserer Milchstraße. Doch die Galaxien im Hintergrund dieses Webb-Teleskopbildes, das die Bewertung der Ausrichtung ermöglicht, sind wohl Milliarden Lichtjahre entfernt, also weit außerhalb der Milchstraße.

Zur Originalseite

JWST auf dem Weg zu L2

Das James-Webb-Weltraumteleskop JWST zieht vor den Sternen des Orion zu seinem Ziel, dem Lagrangepunkt 2.

Bildcredit und Bildrechte: Malcolm Park (Astronomische Gesellschaft North York)

Beschreibung: Dieses Zeitraffer-GIF zeigt das James-Webb-Weltraumteleskop (JWST), wie es auf seiner Reise zu seinem Ziel außerhalb der Mondbahn vor Orions Sternen vorbeizieht. Die Animation entstand am 28. Dezember. Nacheinander wurden 12 Aufnahmen mit einer Belichtungszeit von je 10  Minuten fotografiert, diese wurden ausgerichtet und mit einem danach aufgenommenen Farbbild der Hintergrundsterne zu dieser Animation kombiniert.

Etwa 2,5 Tage nach seinem Start am 25. Dezember passierte das JWST die Höhe der Mondbahn, während es auf dem Weg zu einem Halo-Orbit um L2, einen Erde-Sonne-Lagrangepunkt, die Gravitationsklippe von der Erde überwand. Lagrangepunkte sind günstige Orte im Weltraum, wo die kombinierte Anziehungskraft eines Körpers (Erde), der einen anderen massereichen Körper umrundet (Sonne) im Gleichgewicht ist mit der Zentripetalkraft, die für eine gemeinsame Reise nötig ist. Sehr viel kleinere Massen wie zum Beispiel ein Raumschiff bleiben also eher dort.

L2 ist einer von fünf Lagrangepunkten, er liegt etwa 1,5 Millionen Kilometer von der Erde entfernt auf einer Achse durch Erde und Sonne. JWST erreicht L2 29 Tage nach dem Start am 23. Januar. In der Oberflächengravitation der Erde könnt ihr entspannt online den Fortschritt und die komplexe Entfaltung des James-Webb-Weltraumteleskops beobachten.

Zur Originalseite

Komet Leonard hinter der Rauchwolke des JWST-Starts

Komet Leonard und Ariane V mit dem James-Web-Weltraumteleskop an Bord, beide am Himmel über dem Nationalpark Doi Inthanon in Thailand.

Bildcredit und Bildrechte: Matipon Tangmatitham (NARIT)

Beschreibung: Welche dieser beiden Schlieren ist ein Komet? Beide haben eine Ähnlichkeit mit Kometen, doch die untere Schliere ist der echte Komet. Sie zeigt die Koma und den Schweif des Kometen Leonard, er ist ein Block aus Gestein und Eis von der Größe einer Stadt, der auf seiner lang gezogenen Bahn durch das innere Sonnensystem um die Sonne zieht. Komet Leonard erreichte kürzlich den geringsten Abstand zu Erde und Venus und umrundet nächste Woche die Sonne. Der Komet ist noch mit bloßem Auge sichtbar und entwickelte in den letzten Wochen einen langen, veränderlichen Schweif.

Die obere Schliere ist die Abgasschwade der Trägerrakete Ariane V, die vor zwei Tagen mit dem James-Webb-Weltraumteleskop (JWST) von der Erde startete. Diese Einzelaufnahme wurde in Thailand fotografiert, die Spitze im Vordergrund befindet sich auf einer Pagode im Nationalpark Doi Inthanon. Das JWST ist das bisher größte und mächtigste Weltraumteleskop der NASA, es soll die Sonne in der Nähe des Erde-Sonne-L2-Punktes umkreisen und beginnt voraussichtlich im Sommer 2022 mit wissenschaftlichen Beobachtungen.

Galerie: Komet Leonard 2021
Galerie: Start des James-Webb-Weltraumteleskops am 25. Dezember 2021

Zur Originalseite

James-Webb-Weltraumteleskop über der Erde

Das James-Webb-Weltraumteleskop JWST nach dem Start mit einer Ariane V im Erdorbit auf dem Weg zum L2-Punkt von Sonne und Erde.

Bildcredit: Arianespace, ESA, NASA, CSA, CNES

Beschreibung: Es gibt ein großes neues Teleskop im Weltraum. Das James-Webb-Weltraumteleskop (JWST) hat nicht nur einen Spiegel, dessen Fläche mehr als fünfmal so groß ist wie die des Hubble-Spiegels, sondern es sieht auch besser in Infrarotlicht.

Dieses Bild zeigt JWST hoch über der Erde, kurz nachdem es von der Oberstufe einer Ariane V freigesetzt wurde, die gestern von Französisch-Guayana startete. Im Lauf des nächsten Monats begibt sich das JWST in die Nähe des L2-Punktes von Sonne und Erde, wo es die Sonne zusammen mit der Erde umkreisen wird. Während dieser Zeit und in den fünf Monaten danach entfaltet das JWST seinen mehrteiligen Spiegel sowie eine Anordnung ausgeklügelter wissenschaftlicher Instrumente und testet sie.

Wenn alles gut geht, erforscht das JWST ab dem Sommer 2022 Galaxien im gesamten Universum und Planeten in der Milchstraße, die um Sterne kreisen.

APOD-Galerie: Start des Webb-Weltraumteleskops
Zur Originalseite

JWST: Geister und Spiegel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Chris Gunn, NASA

Beschreibung: Es sind keine Geister, die über dem James-Webb-Weltraumteleskop schweben. Es steht da mit goldgetönten Spiegelsegmenten und gefaltetem Tragwerk im Reinraum der Raumfahrtsysteme-Entwicklungs- und Montageanlage des Goddard-Raumfahrtzentrums, doch die Lichter sind ausgeschaltet. Nachfolgende Vibrations- und Akustiktests, helle Blitze und Ultraviolettlichter werden über das stehende Teleskop gespielt, um nach Kontamination zu suchen, die im abgedunkelten Raum leichter erkennbar ist.

Durch die lange Belichtungszeit der Kamera werden im Dunklen die wandernden Lichter und Ingenieure zu geisterhaften Erscheinungen verwischt. Das James-Webb-Weltraumteleskop ist Hubbles wissenschaftlicher Nachfolger. Es ist für Infrarotforschung im frühen Universum optimiert. Sein Start ist für 2018 auf Französisch-Guayana mit einer Ariane 5 der Europäischen Weltraumagentur geplant.

Zur Originalseite

Webb-Teleskopspiegel wird nach der Montage aufgerichtet


Bildcredit: NASA’s GSFC, Francis Reddy, Syneren Technologies

Beschreibung: Hubble macht Platz – hier kommt das James-Webb-Weltraumteleskop (JWST). JWST soll das neue, mächtigste Teleskop im Weltraum werden. Letzten Monat wurde der vergoldete JWST-Hauptspiegel aus 18 Segmenten enthüllt. Auf diesem Zeitraffervideo von letzter Woche wurde der 6,5 Meter große Spiegel in die senkrechte Position gebracht. Der spektakuläre 30-Sekunden-Film zeigt, wie NASA-Ingenieure den Test überwachen, während die Raumbeleuchtung hell auf der stark reflektierenden Spiegeloberfläche glänzt. Die Berylliumspiegel wurden mit einem dünnen Goldfilm überzogen, damit sie Infrarotlicht besser reflektieren. Zu den wissenschaftlichen Zielen des JWST gehören die Erforschung der Mechanismen im frühen Universum sowie die Eigenschaften der Planeten, die um nahe Sterne kreisen. Weil der Spiegel so groß ist, wird er beim Start gefaltet und später, wenn alles wie geplant läuft, im Weltraum auf dramatisch Weise wieder entfaltet. Der Start des JWST, einer Gemeinschaftsmission der Weltraumagenturen der USA, Europas und Kanadas, ist derzeit für Ende 2018 geplant.

NASA-Bericht: Heute zieht Merkur über die Sonne
Zur Originalseite