M1: Der expandierende Krebsnebel

Bildcredit und Bildrechte: Detlef Hartmann

Sind eure Augen gut genug, um zu sehen, wie der Krebsnebel expandiert? Der Krebsnebel ist als M1 katalogisiert, er ist der erste Nebel auf Charles Messiers berühmter Liste an Dingen, die keine Kometen sind. Heute ist die Krabbe als Supernovaüberrest bekannt, das ist eine sich ausdehnende Trümmerwolke, die nach der Explosion eines massereichen Sterns übrig blieb.

Die heftige Entstehung des Krebsnebels wurde im Jahr 1054 von Sternforschenden beobachtet. Heute hat der Nebel einem Durchmesser von etwa 10 Lichtjahren und dehnt sich immer noch mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde aus.

Dieses Zeitraffervideo dokumentiert seine Ausdehnung im letzten Jahrzehnt. Von 2008 bis 2022 entstand jedes Jahr mit demselben Teleskop und derselben Kamera ein Bild an einer ferngesteuerten Sternwarte in Österreich. Die scharfen, bearbeiteten Einzelbilder zeigen sogar die dynamischen energiereichen Emissionen um den schnell rotierenden Pulsar in der Mitte.

Der Krebsnebel ist ungefähr 6500 Lichtjahre entfernt und liegt im Sternbild Stier (Taurus).

Zur Originalseite

M1: Der Krebsnebel von Hubble

Der Krebsnebel ist eine chaotische Wolke aus vielen Fasern, wie dieses Bild des Weltraumteleskops Hubble zeigt. Beschreibung im Text.

Bildcredit: NASA, ESA, Hubble, J. Hester, A. Loll (ASU)

So ein Chaos entsteht, wenn ein Stern explodiert. Der Krebsnebel ist das Ergebnis einer Supernova aus dem Jahr 1054 n. Chr. und voller rätselhafter Fasern. Die Fasern sind nicht nur ungeheuer komplex, sie besitzen anscheinend auch weniger Masse, als von der ursprünglichen Supernova ausgestoßen wurde, und sie haben eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es ist in drei Farben dargestellt, die nach wissenschaftlichen Gesichtspunkten gewählt wurden. Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar, das ist ein Neutronenstern mit der Masse der Sonne, der aber nur so groß wie eine Kleinstadt. Der Krebspulsar rotiert etwa 30-mal pro Sekunde.

Zur Originalseite

Supernova-Kanone stößt Pulsar J0002 aus

Die Illustration zeigt einen Supernova-Überrest mit einer Linie, die sich nach rechts unten erstreckt und die Spur eines Neutronensterns darstellt.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Kanadische Vermessung der galaktischen Ebene (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Was kann einen Neutronenstern wie eine Kanonenkugel hinausschießen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebeligen Überrest CTB 1 erzeugte, nicht nur einen massereichen Stern, sondern schleuderte außerdem den neu entstandenen Neutronensternkern – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7 Mal pro Sekunde. Er wurde mithilfe der zum Download angebotenen Software Einstein@Home entdeckt. Diese Software durchsucht die Daten des Gammastrahlenobservatoriums Fermi der NASA im Weltraum.

Der Pulsar PSR J0002+6216 (kurz J0002) rast mit mehr als 1000 km pro Sekunde durchs All. Er hat den Supernovaüberrest CTB 1 bereits hinter sich und ist sogar schnell genug, um die Galaxis zu verlassen. Auf diesem Bild ist die Spur des Pulsars gut erkennbar, sie führt vom Supernovaüberrest nach links unten.

Das Bild ist eine Kombination aus Radiobildern der Radioobservatorien VLA und DRAO sowie Archivdaten des Infrarot-Weltraumobservatoriums IRAS der NASA. Wir wissen, dass Supernovae wie Kanonen agieren können, und auch, dass sich Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das zustande bringen.

Zur Originalseite

Der rotierende Pulsar im Krebsnebel

Das Bild zeigt das Innere des Krebsnebels mit dem rotierenden Neutronenstern - dem Krebs-Pulsar, der die Energie für das Leuchten des Krebsnebels M1 liefert.

Bildcredit: NASA: Röntgen: Chandra (CXC), Optisch: Hubble (STScI), Infrarot: Spitzer (JPL-Caltech)

Im Inneren des Krebsnebels befindet sich ein magnetischer Neutronenstern. Er ist als Krebs-Pulsar bekannt, hat die Größe einer Stadt und rotiert 30-mal pro Sekunde. Es ist der helle Punkt im Zentrum des gasförmigen Wirbels im Kern des Nebels.

Das spektakuläre Bild ist etwa zwölf Lichtjahre breit, es zeigt leuchtendes Gas, Höhlen und wirbelnde Fasern um das Zentrum des Krebsnebels. Das Bild kombiniert Aufnahmen in sichtbarem Licht des Weltraumteleskops Hubble in Violett, Röntgen-Daten des Röntgen-Observatoriums Chandra in Blau und Infrarot-Daten des Weltraumteleskops Spitzer in Rot.

Wie ein kosmischer Dynamo liefert der Krebspulsar die Energie für die Emissionen des Nebels. Er treibt eine Stoßwelle durch das umgebende Material und beschleunigt die Elektronen auf spiralförmigen Bahnen.

Der rotierende Pulsar besitzt mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern eines explodierten massereichen Sterns. Die äußeren Teile des Krebsnebels sind die expandierenden Überreste der Gasbestandteile des Sterns. Die Supernovaexplosion wurde im Jahr 1054 auf dem Planeten Erde beobachtet.

Erforsche das Universum mit dem APOD-Zufallsgenerator
Zur Originalseite

Supernovaüberrest Simeis 147

Der Supernovaüberrest Simeis 147 an der Grenze zwischen den Sternbildern Stier und Fuhrmann.

Bildcredit und Bildrechte: Jason Dain

Beschreibung: Man verirrt sich leicht, wenn man auf diesem detailreichen Bild des Supernovaüberrests Simeis 147 den komplexen, verworrenen Fasern folgt. Der Nebel ist auch als Sharpless 2-240 katalogisiert und trägt den gängigen Namen Spaghettinebel. Er liegt an der Grenze zwischen den Sternbildern Stier und Fuhrmann und bedeckt am Himmel fast 3 Grad oder 6 Vollmonde. In der geschätzten Entfernung der stellaren Trümmerwolke von 3000 Lichtjahren ist der Nebel somit etwa 150 Lichtjahre groß.

Dieses Kompositbild wurde mit Schmalbandfiltern aufgenommen. Rötliche Emissionen ionisierter Wasserstoffatome und doppelt ionisierte Sauerstoffatome in blassen blaugrünen Farbtönen zeichnen das erschütterte leuchtende Gas nach. Der Supernovaüberrest ist schätzungsweise 40.000 Jahre alt, somit erreichte das Licht der gewaltigen Sternexplosion erstmals vor 40.000 Jahren die Erde.

Doch der expandierende Überrest ist nicht alles, was übrig blieb. Bei der kosmischen Katastrophe entstand auch ein rotierender Neutronenstern oder Pulsar, der als Einziges vom Kern des ursprünglichen Sterns erhalten blieb.

Zur Originalseite

Blitze des Krebs-Pulsars


Videocredit und -rechte: Martin Fiedler

Beschreibung: Irgendwie überlebte er eine Explosion, die unsere Sonne sicher zerstört hätte. Nun rotiert er 30 Mal pro Sekunde und ist berühmt für seine schnellen Blitze. Es ist der Krebsnebel-Pulsar, der rotierende, übrig gebliebene Neutronenstern der Supernova, die den Krebsnebel erzeugt hat.

Wenn ihr genau hinseht, erkennt ihr in diesem Zeitlupenvideo die Blitze des Pulsars knapp über der Bildmitte. Das Video entstand durch Kombination von Bildern mit Blitzen des Pulsars, die mit Bildern von anderen vergleichbaren Zeiträumen gemischt wurden.

Möglicherweise wurden die Blitze des Krebs-Pulsars erstmals 1957 von einer unbekannten Frau bei einer öffentlichen Beobachtungsnacht der Universität Chicago beobachtet, doch keiner glaubte ihr. Die vorherige Supernovaexplosion wurde im Jahr 1054 n. Chr. von vielen beobachtet.

Der expandierende Krebsnebel bleibt eine malerische, expandierende Gaswolke, die im gesamten elektromagnetischen Spektrum leuchtet. Heute geht man davon aus, dass der Pulsar die Supernovaexplosion überlebte, weil er aus extrem dichter, quantenmechanisch entarteter Materie besteht.

Zur Originalseite

Supernovaüberrest Simeis 147

Der Supernovaüberrest Simeis 147 ist auch als Sharpless 2-240 katalogisiert und trägt den Spitznamen Spaghettinebel.

Bildcredit und Bildrechte: Georges Attard

Beschreibung: Leicht verirrt man sich, wenn man auf diesem detailreichen Bild des Supernovaüberrests Simeis 147 den verschlungenen Schleifen folgt. Er ist auch als Sharpless 2-240 katalogisiert und trägt den Spitznamen Spaghettinebel. Ihr seht ihn an den Grenzen der Sternbilder Stier und Fuhrmann. Am Himmel hat er einen Durchmesser von fast 3 Grad oder 6 Vollmonden. In der geschätzten Entfernung der Sterntrümmerwolke von 3000 Lichtjahren entspricht das ungefähr 150 Lichtjahren.

Dieses Komposit entstand aus Bilddaten, die mit Schmalbandfiltern aufgenommen wurden. Die rötlichen Emissionen ionisierter Wasserstoffatome und die blaugrünen Farbtöne doppelt ionisierter Sauerstoffatome markieren das erschütterte, leuchtende Gas.

Der Supernovaüberrest hat ein geschätztes Alter von 40.000 Jahren, was bedeutet, dass das Licht der mächtigen Sternexplosion vor 40.000 Jahren erstmals die Erde erreichte. Doch der expandierende Überrest ist nicht alles, was zurückblieb. Die kosmische Katastrophe hinterließ auch einen rotierenden Neutronenstern oder Pulsar, dieser ist als Einziges vom ursprünglichen Sternkern übrig.

Zur Originalseite

Eine Hitzepunktkarte der Oberfläche des Neutronensterns J0030

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, NICER, CI Lab des GSFC

Beschreibung: Wie sehen Neutronensterne aus? Diese Sterne, die etwa so groß sind wie eine Stadt, waren früher zu klein und zu weit entfernt, um sie aufzulösen.

Kürzlich wurden jedoch erste Karten der Orte und Größen von Hitzepunkten auf der Oberfläche eines Neutronensterns erstellt, indem sorgfältig modelliert wurde, wie die Röntgenhelligkeit des Sterns durch seine schnelle Rotation steigt und fällt. Diese anschauliche Karte basiert auf einem der führenden Modelle. Sie zeigt die Hitzepunkte des Pulsars J0030+0451, der Rest der Sternoberfläche ist mit einem fleckigen Falschfarbenblau aufgefüllt.

J0030 rotiert alle 0,0049 Sekunden um seine Achse und ist etwa 1000 Lichtjahre entfernt. Die Karte wurde aus Daten errechnet, die mit dem Röntgenteleskop Neutron star Interior Composition ExploreR (NICER) der NASA aufgenommen wurden. Dieses Teleskop ist an der Internationalen Raumstation befestigt. Die errechneten Orte der Hitzepunkte überraschen und sind nicht gut erklärbar.

Weil der Gravitationslinseneffekt von Neutronensternen so stark ist, sieht man von der Erde aus mehr als die Hälfte der Oberfläche von J0030. Untersuchungen des Erscheinungsbildes von Pulsaren wie J0030 erlaubt eine genaue Abschätzung von Masse und Radius sowie der internen Physik des Neutronensterns, die verhindert, dass der Stern zu einem Schwarzen Loch implodiert.

Zur Originalseite

Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Elemente des Nachleuchtens

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC/SAO

Beschreibung: Massereiche Sterne verbrennen im Laufe ihres kurzen Lebens rasend schnell Kernbrennstoff. Durch Fusion werden bei extremen Temperaturen und Dichten um den Sternkern herum die Kerne leichter Elementen wie Wasserstoff und Helium zu schwereren Elementen wie Kohlenstoff, Sauerstoff etc. kombiniert – in einer Reihe, die mit Eisen endet. Daher schleudert eine Supernovaexplosion – das unvermeidliche und spektakuläre Ende eines massereichen Sterns – Überreste in den Weltraum zurück, die mit schwereren Elementen angereichert sind, welche später in andere Sterne und Planeten (und Menschen!) eingebaut werden.

Dieses detailreiche Falschfarben-Röntgenbild des Chandra-Observatoriums im Orbit zeigt so eine heiße, expandierende stellare Trümmerwolke, die etwa 36 Lichtjahre groß ist. Dieser junge Supernovaüberrest ist als G292.0+1.8 katalogisiert und liegt im südlichen Sternbild Zentaur. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde vor ungefähr 1600 Jahren.

Bläuliche Farben zeigen viele Millionen Grad heiße Gasfasern, die besonders viel Sauerstoff, Neon und Magnesium enthalten. Ein punktförmiges Objekt links unter der Mitte auf diesem Chandrabild lässt vermuten, dass im Nachleuchten der anreichernden Supernova auch ein Pulsar entstand – ein rotierender Neutronenstern, Überrest des kollabierten Sternkerns.

Das faszinierende Bild wurde zur 20-Jahresfeier des Röntgenobservatoriums Chandra veröffentlicht.

Zur Originalseite

NICER bei Nacht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, NICER

Beschreibung: Der Neutron Star Interior Composition Explorer (NICER), eine Nutzlast an Bord der Internationalen Raumstation, dreht und wendet sich, um kosmische Röntgenquellen zu verfolgen, während die Station alle 93 Minuten den Planeten Erde umkreist. Auf der Nachtseite der Bahn bleiben die Röntgendetektoren eingeschaltet. Während NICER also von Ziel zu Ziel schwenkt, werden die hellen Bögen und Schleifen dieser Ganzhimmelskarte gezogen, die aus NICER-Daten von 22 Monaten erstellt wurde.

Die Bögen laufen tendenziell an markanten hellen Stellen zusammen – es sind Pulsare am Röntgenhimmel, die NICER regelmäßig erfasst und überwacht. Pulsare sind rotierende Neutronensterne, die getaktete Röntgenpulse abgeben. Ihr Takt ist so präzise, dass sie zur Navigation verwendet werden – zur Bestimmung von Geschwindigkeit und Position von Raumfahrzeugen. Die Koordinaten dieser NICER-Röntgenkarte des ganzen Himmels sind so gewählt, dass der Himmelsäquator waagrecht in der Mitte verläuft.

Zur Originalseite