Dunkle Materie in einem simulierten Universum

Simulation der Verteilung Dunkler Materie im Universum.

Illustrationscredit und -rechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Beschreibung: Spukt es in unserem Universum? Auf dieser Karte der Dunklen Materie sieht es so aus. Die Schwerkraft der unsichtbaren Dunklen Materie ist die wichtigste Erklärung dafür, warum Galaxien sich so schnell drehen, warum Galaxien so schnell um Galaxienhaufen kreisen, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie sowohl im lokalen Universum als auch im fernen kosmischen Mikrowellenhintergrund so verteilt ist, wie sie ist.

Dieses Bild aus der Weltraumschau „Dunkles Universum“ des Hayden-Planetariums im Amerikanischen Museum für Naturkunde zeigt ein mögliches Beispiel dafür, wie allgegenwärtig Dunkle Materie in unserem Universum ist. Es stammt aus einer detailreichen Computersimulation, schwarz dargestellte komplexe Fasern aus Dunkler Materie im Universum sind wie Spinnweben verteilt. Die relativ seltenen Klumpen vertrauter baryonischer Materie sind orange gefärbt. Diese Simulation stimmt statistisch sehr gut mit den astronomischen Beobachtungen überein.

Noch gruseliger ist vielleicht, dass Dunkle Materie – obwohl sie an sich schon ziemlich seltsam ist und eine unbekannte Form hat – nicht mehr als die eigenartigste Gravitationsquelle im Universum gilt. Diese Ehre gebührt nun der Dunklen Energie, einer gleichförmigeren Quelle abstoßender Gravitation, die anscheinend die Expansion des gesamten Universums bestimmt.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie
Zur Originalseite

Rubins Galaxie

Die Spiralgalaxie UGC 2885 war Teil der bahnbrechenden Studie der Astronomin Vera Rubin zur Rotation von Galaxien im Zusammenhang mit Dunkler Materie.

Bildcredit: NASA, ESA, B. Holwerda (University of Louisville)

Beschreibung: Dieses Bild des Weltraumteleskops Hubble entstand im heroischen nördlichen Sternbild Perseus, die hellen, gezackten Sterne liegen im Vordergrund weit innerhalb unserer Milchstraße.

Dahinter liegt UGC 2885 im Fokus, sie ist eine helle, ungefähr 232 Millionen Lichtjahre entfernte Spiralgalaxie, etwa 800.000 Lichtjahre groß. Der Durchmesser der Milchstraße beträgt im Vergleich dazu etwa 100.000 Lichtjahre. Die Zahl ihrer Sterne beträgt ungefähr eine Billion, das sind etwa 10-mal so viele Sterne wie in der Milchstraße.

UGC 2885 war Gegenstand einer Untersuchung, um zu verstehen, wie Galaxien zu einer so gewaltigen Größe anwachsen können. Außerdem war UGC 2885 auch Teil der interessanten Reise und bahnbrechenden Studie der Astronomin Vera Rubin zur Rotation von Spiralgalaxien. Ihre Arbeit war die erste, welche die alles bestimmende Präsenz Dunkler Materie in unserem Universum überzeugend nachweisen konnte.

Zur Originalseite

Vertont: Die Materie des Geschosshaufens


Bildcredit und Bildrechte: Röntgen: NASA/CXC/SAO; Optisch: NASA/STScI, Magellan/U.Arizona; Gravitationslinsenkarte: NASA/STScI, ESO WFI, Magellan/U.Arizona; Vertonung: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)

Beschreibung: Was ist mit dem Geschoßhaufen los? Dieser massereiche Galaxienhaufen (1E 0657-558) bildet Gravitationslinsenverzerrungen an Hintergrundgalaxien auf eine Weise, die als Bestätigung für die führende Theorie interpretiert wurde: dass es dort Dunkle Materie gibt.

Andere Untersuchungen lassen jedoch eine weniger beliebte Alternative vermuten: veränderte Gravitation. Diese könnte die Haufendynamik ohne Dunkle Materie erklären und bietet auch ein wahrscheinlicheres Ursprungsszenario.

Derzeit wetteifern zwei wissenschaftliche Hypothesen um die Erklärung der Beobachtungen: unsichtbare Materie versus veränderte Gravitation. Das Duell ist dramatisch, denn ein eindeutiges, „kugelsicheres“ Beispiel für Dunkle Materie würde die Einfachheit der Theorie der modifizierten Gravitation erschüttern.

Dieses vertonte Kompositbild stammt von Hubble, Chandra und Magellan. Röntgenstrahlen, die von heißem Gas abgestrahlt werden, sind rot abgebildet, Blau zeigt die vorgeschlagene getrennte Verteilung der Dunklen Materie. Tiefe Töne der Sonifikation sind der Dunklen Materie zugewiesen, mittlere Frequenzen dem sichtbaren Licht und hohe Töne den Röntgenstrahlen.

Der Kampf um die Materie im Geschoßhaufen geht wahrscheinlich weiter, sobald mehr Beobachtungen, Computersimulationen und Analysen abgeschlossen sind.

Bei APOD eingereicht: Schöne Bilder des Geminiden-Meteorstroms 2020
Zur Originalseite

Galaxie des Schreckens

Geheimnisvolle Dunkle Materie, Friedhofsgalaxie, Zombie-Welten und Gammastrahlenausbrüche des Verderbens.

Poster-Illustration-Credit: NASA, JPL-Caltech, The Galaxy of Horrors

Beschreibung: Heute Abend könnt ihr die extremen und furchterregenden Welten des Universums erkunden. Wenn ihr einen Blick riskiert, sind geheimnisvolle dunkle Materie, eine Friedhofsgalaxie, Zombie-Welten und Gammastrahlenausbrüche des Verderbens noch nicht alles, was euch erwartet.. Folgt einfach dem Link und denkt daran: Es basiert alles auf echter Wissenschaft, sogar die unheimlichen Stellen. Ich wünsche euch ein sicheres und fröhliches Halloween!

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Auf dieser Simulation des Hayden Planetariums scheint Dunkle Materie im Universum häufiger vorzukommen als baryonische Materie.

Illustrationscredit und -rechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Beschreibung: Spukt es in unserem Universum? Auf dieser Karte Dunkler Materie scheint es so. Die Gravitation unsichtbarer Dunkler Materie ist die führende Erklärung dafür, warum Galaxien so schnell rotieren, warum Galaxien auf ihren Bahnen in Galaxienhaufen so schnell sind, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie wir das beobachten – sowohl im lokalen Universum als auch im kosmischen Mikrowellenhintergrund.

Dieses Bild aus der schon älteren Weltraumschau „Dunkles Universum“ des Hayden Planetariums im Amerikanischen Museum für Naturgeschichte zeigt ein Beispiel, wie die alles durchdringende Dunkle Materie im Universum spuken könnte. Auf diesem Bild aus einer detailreichen Computersimulation sind schwarz abgebildete komplexe Fasern aus Dunkler Materie wie Spinnweben im Universum verteilt, während die relativ seltenen Klumpen aus vertrauter baryonischer Materie orange gefärbt sind. Diese Simulationen passen gut zu astronomischen Beobachtungen.

Eine vielleicht noch beängstigendere Wende der Ereignisse ist, dass Dunkle Materie – obwohl ziemlich seltsam und eine unbekannte Form – nicht mehr als seltsamste Quelle der Gravitation im Universum gilt. Diese Ehre gebührt der Dunklen Energie, einer gleichförmigeren Quelle abstoßender Gravitation, die nun anscheinend die Ausdehnung des gesamten Universums kontrolliert.

Zur Originalseite

Extrem schnell rotierende Spiralgalaxien

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: obere Reihe: NASA, ESA, Hubble, P. Ogle und J. DePasquale (STScI); untere Reihe: SDSS, P. Ogle und J. DePasquale (STScI)

Beschreibung: Warum rotieren diese Galaxien so schnell? Wenn Sie die Masse jeder Spirale danach einschätzen, wie viel Licht sie abstrahlt, müssten sie durch ihre schnelle Rotation auseinanderbrechen.

Die führende Vermutung, warum diese Galaxien nicht auseinanderbrechen, ist Dunkle Materie – Masse, die so dunkel ist, dass wir sie nicht sehen können. Diese Galaxien übertreffen mit ihrer Rotationsgeschwindigkeit sogar die Zerfallsgrenze – sie sind die am schnellsten rotierenden Scheibengalaxien, die wir kennen. Daher wird weiters vermutet, dass ihre Höfe aus Dunkler Materie so massereich sind – und ihre Rotation so schnell -, dass in diesen Galaxien weniger leicht Sterne entstehen als in gewöhnlichen Spiralen. Falls dem so ist, könnten diese Galaxien zu den massereichsten Spiralgalaxien gehören, die überhaupt möglich sind.

Überraschende Superspiralen wie diese werden weiterhin erforscht, wahrscheinlich auch durch Beobachtungen mit dem James-Webb-Weltraumteleskop der NASA, dessen Start für 2021 geplant ist.

Zur Originalseite

Das Grinsen der Schwerkraft

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen – NASA / CXC / J. Irwin et al.; Optisch – NASA/STScI

Beschreibung: Albert Einsteins Allgemeine Relativitätstheorie, die vor 100 Jahren veröffentlicht wurde, sagte das Phänomen des Gravitationslinseneffektes voraus. Dieser Effekt verleiht diesen fernen Galaxien eine so launige Erscheinung, wenn man sie im Spiegel von Röntgen- und optischen Bilddaten der Weltraumteleskope Chandra und Hubble betrachtet.

Die Galaxiengruppe trägt den Spitznamen Grinsekatze. Ihre beiden elliptischen Galaxien werden von angedeuteten Bögen eingerahmt. Diese Bögen sind optische Bilder ferner Hintergrundgalaxien. Sie wurden von der Gesamtverteilung der Gravitationsmasse der Gruppe im Vordergrund gebrochen. Diese Gravitationsmasse besteht vorwiegend aus Dunkler Materie.

Die beiden großen elliptischen „Augen“-Galaxien sind die hellsten Mitglieder ihrer Galaxiengruppe, sie sind dabei zu verschmelzen. Ihre relative Kollisionsgeschwindigkeit von fast 1350 Kilometern pro Sekunde erhitzt Gas auf Millionen Grad. Dabei entsteht das Leuchten im Röntgenspektralbereich, das in violetten Farbtönen abgebildet ist.

Sind Sie neugierig auf die Verschmelzung von Galaxiengruppen? Die Grinsekatzengruppe lächelt etwa 4,6 Milliarden Lichtjahre entfernt im Sternbild Großer Bär (Ursa Major).

Zur Originalseite

Die lokale Leere im nahen Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: R. Brent Tully (U. Hawaii) et al.

Beschreibung: Wie sieht unsere Region des Universums aus? Da Galaxien so weit über den Himmel verteilt sind, und weil unsere Milchstraße einen Teil des fernen Himmels abdeckt, war es schwierig, das zu beurteilen. Doch nun wurde eine neue Karte erstellt, die aus großräumigen Galaxienbewegungen ableitet, welche massereichen Objekte im nahen Universum gravitativen Einfluss ausüben müssen.

Diese Karte hat eine Seitenlänge von mehr als 600 Millionen Lichtjahren und zeigt, dass unsere Galaxis am Rand des Virgo-Galaxienhaufens liegt, der mit dem großen Attraktor verbunden ist – einer noch größeren Galaxiengruppierung. In der Nähe befinden sich auch der massereiche Koma-Haufen und der ausgedehnte Perseus-Fische-Superhaufen.

Andererseits befinden wir uns auch am Rand einer riesigen Region, die fast frei von Galaxien ist, und die als lokale Leere bekannt ist. Der abstoßende Schub der lokalen Leere, kombiniert mit dem gravitativen Zug zur erhöhten Galaxiendichte auf der anderen Seite des Himmels, erklärt einen Teil der rätselhaft hohen Geschwindigkeit unserer Galaxis vor dem kosmischen Mikrowellenhintergrund – aber nicht zur Gänze.

Wenn Sie das lokale Universum selbst – wie von Cosmicflows-3 beschrieben- erforschen möchten, können Sie diese interaktive 3D-Visualisierung vergrößern und drehen.

Zur Originalseite