Planck-Karten des Mikrowellenhintergrundes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Europäische Weltraumorganisation, Planck Collaboration

Beschreibung: Woraus besteht unser Universum? Um das herauszufinden, startete die ESA den Satelliten Planck, der von 2009 bis 2013 so detailreich wie nie zuvor leichte Temperaturunterschiede auf der ältesten optischen Oberfläche kartierte, die wir kennen – dem Himmelshintergrund, der vor Milliarden Jahren übrig blieb, als unser Universum erstmals für Licht transparent wurde.

Dieser kosmische Mikrowellenhintergrund ist in allen Richtungen sichtbar. Es ist ein komplexer Bildteppich, der die beobachteten heißen und kalten Muster nur dort aufweist, wo das Universum aus bestimmten Arten von Energie besteht, die sich auf bestimmte Weise entwickelt haben. Letzte Woche wurden die endgültigen Ergebnisse veröffentlicht. Diese bestätigen erneut, dass ein Großteil unseres Universums aus rätselhafter, unbekannter Dunkler Energie besteht, und dass auch ein Großteil der verbleibenden Materienenergie seltsam dunkel ist.

Zusätzlich bestätigen die „finalen“ 2018er-Planckdaten eindrucksvoll, dass das Alter des Universums etwa 13,8 Milliarden Jahre beträgt, und dass die lokale Expansionsrate, die als Hubblekonstante bezeichnet wird, 67,4 (+/- 0,5) km/sec/Mpc beträgt. Seltsamerweise ist diese durch Beobachtung des frühen Universums ermittelte Hubblekonstante etwas niedriger ist als jene, die durch andere Methoden im späten Universum ermittelt wurde. Die dadurch entstehende Diskrepanz sorgt für viele Diskussionen und Mutmaßungen.

Zur Originalseite

Zufallsblitz – ein Kandidat für den bisher fernsten Stern

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA und P. Kelly (U. Minnesota) et al.

Beschreibung: Stammt dieser Blitz vom fernsten Stern, den wir je gesehen haben? Ein unerwarteter Lichtblitz, der zufällig auf Bildern des Weltraumteleskops Hubble entdeckt wurde, ist vielleicht nicht nur ein ungewöhnliches Gravitationslinsenereignis, sondern auch das Bild eines normalen Sterns, der 100 Mal weiter entfernt ist als jeder bisher einzeln abgebildete Stern.

Dieses Bild zeigt links den Galaxienhaufen mit vielen gelblichen Galaxien. Rechts befindet sich ein ausgedehntes Quadrat, wo 2016 eine Quelle erschien, die 2011 nicht erkennbar war. Das Spektrum und die Veränderlichkeit dieser Quelle ähneln seltsamerweise nicht einer Supernova, sondern passen eher zu einem normalen blauen Überriesenstern, der durch eine Ansammlung ausgerichteter Gravitationslinsen etwa um den Faktor 2000 vergrößert wurde. Diese Quelle wird als Icarus bezeichnet, sie befindet in einer Galaxie weit hinter dem Galaxienhaufen im fernen Universum – bei Rotverschiebung 1,5.

Wenn die Interpretation der Linse korrekt und Icarus kein explodierender Stern ist, könnten weitere Beobachtungen dieses und anderer ähnlich vergrößerter Sterne Information über den Gehalt an stellarer und Dunkler Materie in diesem Galaxienhaufen und im Universum liefern.

Zur Originalseite

Dunkle Materie in einem simulierten Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit und Bildrechte: Tom Abel und Ralf Kaehler (KIPAC, SLAC), AMNH

Beschreibung: Spukt es in unserem Universum?

Auf dieser Karte der Dunklen Materie sieht es fast so aus. Die Gravitation unsichtbarer Dunkler Materie ist die beste Erklärung dafür, warum Galaxien so schnell rotieren, warum Galaxien so schnell um Haufen kreisen, warum Gravitationslinsen Licht so stark ablenken und warum sichtbare Materie so verteilt ist, wie sie ist – sowohl im lokalen Universum als auch im kosmischen Mikrowellenhintergrund.

Dieses Bild aus der Weltraumschau „Das dunkle Universum“ des Hayden-Planetariums im American Museum of Natural History zeigt, wie die allgegenwärtige Dunkle Materie in unserem Universum spuken könnte. Auf diesem Bild aus einer detailreichen Computersimulation sind schwarz dargestellte, komplexe Fasern aus alles durchdringender Dunkler Materie wie Spinnennetze im Universum verteilt. Die relativ raren Klumpen aus vertrauter baryonischer Materie sind orange gefärbt.

Diese Simulationen stimmen statistisch gesehen gut mit astronomischen Beobachtungen überein. Etwas unheimlicher ist, dass Dunkle Materie – obwohl sie ziemlich seltsam ist und einer unbekannte Form hat – nicht mehr die seltsamste vermutete Quelle der Gravitation im Universum ist. Diese Ehre fällt nun der Dunklen Energie zu, einer homogeneren Quelle abstoßender Gravitation, welche die Ausdehnung des ganzen Universums zu bestimmen scheint.

Nicht nur Halloween: Heute ist Tag der Dunklen Materie
Zur Originalseite

Vier Quasarbilder umgeben eine Galaxienlinse

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: ESA/Hubble, NASA, Sherry Suyu et al.

Beschreibung: Das Seltsame an dieser Gruppe aus Lichtern in der Mitte ist, dass vier davon derselbe ferne Quasar sind, weil die Galaxie im Vordergrund – in der Mitte der Quasarbilder und hier vorgestellt – als unruhige Gravitationslinse wirkt. Vielleicht noch seltsamer ist, dass man durch Beobachtung des Flackerns dieses Quasars im Hintergrund die Expansionsgeschwindigkeit des Universums schätzen kann, weil die Flackerabläufe zunehmen, wenn die Expansionsgeschwindigkeit steigt. Manche Astronomen sehen das Verrückteste darin, dass diese mehrfach abgebildeten Quasare ein Hinweis auf ein Universum sind, das etwas schneller expandiert als mithilfe verschiedener Methoden, die für das frühe Universum gelten, geschätzt wurde. Das ist so, weil … nun ja, niemand weiß, warum. Zu den Gründen könnte eine unerwartete Verteilung Dunkler Materie, ein unerwarteter Gravitationseffekt oder etwas ganz Anderes zählen. Vielleicht beseitigen künftige Beobachtungen und Analysen dieses und ähnlich gebrochener Quasarbilder diese Unklarheiten.

Zur Originalseite

Polarring-Galaxie NGC 660

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: CHART32-Team, BearbeitungJohannes Schedler

Beschreibung: Dieser kosmische Schnappschuss zeigt NGC 660. Sie ist mehr als 40 Millionen Lichtjahre entfernt und schwimmt im Sternbild Fische. Die seltsame Erscheinung von NGC 660 kennzeichnet sie als Polarring-Galaxie. Polarring-Galaxien sind eine seltene Galaxienart mit einer beträchtlichen Population aus Sternen, Gas und Staub, die in Ringen kreisen, welche stark zur Ebene der Galaxienscheibe geneigt sind. Die bizarre Anordnung könnte zufällig entstanden sein, indem eine Scheibengalaxie Materie von einer vorbeiziehenden Galaxie einfing, wobei die eingefangenen Teile schlussendlich in einen rotierenden Ring gezogen wurden. Die gewaltige gravitative Wechselwirkung hätte in diesem Fall zu den Myriaden rötlicher Sternbildungsregionen geführt, die im Ring von NGC 660 verteilt sind. Mithilfe des Polarrings kann auch die Form des sonst unsichtbaren Hofes aus Dunkler Materie erforscht werden, indem man den Gravitationseinfluss der Dunklen Materie auf die Rotation von Ring und Scheibe berechnet. Der Ring um NGC 660 ist breiter als die Scheibe und größer als 50.000 Lichtjahre.

Zur Originalseite

Die Materie des Geschoßhaufens 1E 0657-558

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: NASA/CXC/CfA/ M. Markevitch et al.; Gravitationslinsenkarte: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al.; Optisch: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.

Beschreibung: Was ist los mit dem Geschoßhaufen?

Dieser massereiche Galaxienhaufen (1E 0657-558) erzeugt Gravitationslinsenverzerrungen bei Hintergrundgalaxien auf eine Art, die als starkes Indiz für die führende Theorie gewertet wurde: dass es darin Dunkle Materie gibt.

Andere aktuelle Analysen lassen jedoch vermuten, dass eine weniger bekannte Möglichkeit – veränderliche Gravitation – das Kräftespiel im Haufen ohne Dunkle Materie erklären könnte, was ein weiteres wahrscheinlicheres Vorläuferszenario wäre. Derzeit wetteifern die beiden wissenschaftlichen Hypothesen um die Erklärung der Beobachtungen: unsichtbare Materie kontra abgeänderte Gravitation.

Der Wettkampf ist dramatisch, da ein klares kugelsicheres Beispiel für Dunkle Materie die Einfachheit der Theorien zu veränderter Gravitation zerschlagen würde. In naher Zukunft wird der Streit um den Geschoßhaufen wahrscheinlich fortgeführt, wenn neue Beobachtungen, Computersimulationen und Analysen abgeschlossen werden.

Dieses Bild ist ein Komposit aus Hubble-, Chandra– und Magellan-Daten, Rot die zeigt Röntgenstrahlung des heißen Gases, die vermutete Verteilung der getrennten Dunkle Materie ist in Blau abgebildet.

Zur Originalseite

NGC 4414: eine wolkige Spiralgalaxie

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, W. Freedman (U. Chicago) et al. und das Hubble Heritage Team (AURA/STScI), SDSS Bearbeitung: Judy Schmidt

Beschreibung: Wie viel Masse verbergen wolkige Spiralen? Dieses Echtfarbenbild der wolkigen Spiralgalaxie NGC 4414 wurde mit dem Weltraumteleskop Hubble fotografiert, um diese Frage zu beantworten. Wolkige Spiralen – Galaxien ohne klar definierte Spiralarme – sind eine häufige Galaxienart, und NGC 4414 ist eine der nächstgelegenen. Sterne und Gas nahe dem sichtbaren Rand von Spiralgalaxien umkreisen das Zentrum so schnell, dass die Gravitation einer großen Menge unsichtbarer Dunkler Materie vorhanden sein muss, um sie zusammenzuhalten.

Die Verteilung von Materie und Dunkler Materie in NGC 4414 zu verstehen hilft der Menschheit, den Rest dieser Galaxie und – davon abgeleitet – flockiger Spiralen allgemein zu kalibrieren. Weiters hilft die Vermessung der Entfernung zu NGC 4414 der Menschheit, die kosmologische Entfernungsskala des gesamten sichtbaren Universums zu eichen.

Zur Originalseite

M63: Die Sonnenblumengalaxie von Hubble

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: ESA, NASA, Hubble

Beschreibung: Eine der hellen Spiralgalaxien am nördlichen Himmel ist M63, die Sonnenblumengalaxie. M63 ist auch als katalogisiert NGC 5055. Sie ist mit einem kleinen Teleskop im Sternbild Jagdhunde (Canes Venatici) zu finden. Auf diesem Bild des Weltraumteleskops Hubble ist das Zentrum von M63 mit langen, gewundenen Spiralarmen zu sehen.

Das blaue Leuchten stammt von wenigen hellen, jungen Sternen. Emissionsnebel aus heißem, ionisiertem Wasserstoff leuchten rot, dazwischen liegen viele Fasern aus dunklem Staub. Zwischen M63 und M51 (die Strudelgalaxie) sowie mehreren kleineren Galaxien gibt es Wechselwirkungen durch Gravitation. Licht braucht ungefähr 35 Millionen Jahre, um uns von M63 zu erreichen, und etwa 60.000 Jahre, um die Spiralgalaxie zu durchqueren.

Die Sterne in den äußeren Regionen der Sonnenblumengalaxie kreisen so schnell um das Zentrum, dass sie angesichts der sichtbaren Materie und bei Annahme normaler Gravitation in den Weltraum hinausfliegen müssten. Dass die Sterne in der Galaxie bleiben, wird als Hinweis auf eine unsichtbare Dunkle Materie gedeutet, welche die Sterne durch Gravitation zurückhält.

Zur Originalseite

Polarring-Galaxie NGC 660

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Gemini Observatory, AURA, Travis Rector (Univ. Alaska Anchorage)

Beschreibung: NGC 660 ist auf diesem kosmischen Schnappschuss zu sehen. Diese gestochen scharfe Kompositbild wurde aus Daten erstellt, die am Gemi-Nord-Teleskop auf dem Mauna Kea mit Breit- und Schmalbandfiltern gewonnen wurden. Die Galaxie ist mehr als 20 Millionen Lichtjahre entfernt und schwimmt im nördlichen Sternbild Fische. Die eigenartige Erscheinung von NGC 660 markiert sie als Polarring-Galaxie. Polarring-Galaxien, eine seltene Galaxiengruppe, haben eine beträchtliche Population an Sternen, Gas und Staub, die fast senkrecht auf die Ebene der Galaxie in Ringen um diese kreisen. Die bizarr aussehende Konfiguration könnte durch das zufällige Einfangen von Materie von einer vorbeiziehenden Scheibengalaxie entstanden sein, wobei die eingefangenen Trümmer schlussendlich zu einem rotierenden Ring herausgezogen wurden. Die gewaltige gravitative Wechselwirkung könnte die zahllosen rötlichen Sternbildungsregionen erklären, die entlang des Ringes von NGC 660 verteilt sind. Die Polarring-Komponente könnte auch dazu dienen, die Form des ansonsten unsichtbaren Hofes aus Dunkler Materie in der Galaxie zu erforschen, indem der gravitative Einfluss der Dunklen Materie auf die Rotation des Ringes und der Scheibe berechnet wird. Der Ring von NGC 660 ist breiter als die Scheibe und umfasst mehr als 50.000 Lichtjahre.

Zur Originalseite

Flug durch das Universum


Videocredit: M. A. Aragón (JHU), M. SubbaRao (Adler), A. Szalay (JHU), Y. Yao (LBN, NERSC) und die SDSS-III-Collaboration

Beschreibung: Wie wäre es, durch das Universum zu fliegen? Das vielleicht am besten simulierte Video, das das veranschaulicht, wurde aus kürzlich veröffentlichten Galaxiendaten der Sloan Digital Sky Survey erstellt. Jeder Punkt im obigen Video ist eine Galaxie, die Milliarden Sterne enthält. Viele Galaxien gehören zu riesigen Haufen, langen Filamenten oder kleinen Gruppen, während es auch ausgedehnte Lücken gibt, die kaum Galaxien enthalten. Der Film beginnt mit einem Flug mitten durch einen großen, nahen Galaxienhaufen und kreist später um das mithilfe der SDSS aufgenommene Universum – von der Erde etwa 2 Milliarden Lichtjahre entfernt (das entspricht einer Rotverschiebung von etwa 0,15). Analysen der Positionen und Bewegungen der Galaxien stützen die Annahme, dass unser Universum nicht nur die helle, sichtbare Materie enthält – Galaxien etwa -, sondern auch einen beträchtlichen Anteil an unsichtbarer Dunkler Materie und Dunkler Energie.

Zur Originalseite

Film mit Dunkler Materie aus der Bolshoi-Simulation


Video-Credit: A. Klypin (NMSU), J. Primack (UCSC) et al., Chris Henze (NASA Ames), NASA’s Pleiades Supercomputer; Musik (© 2002): Her Knees Deep in Your Mind von Ray Lynch

Beschreibung: Was wäre, wenn Sie durch das Universum fliegen und die Dunkle Materie sehen könnten? Während an der Technologie für einen solchen Flug noch gearbeitet wird, hat die Technik zur Visualisierung solch eines Flugs mit dem Abschluss der der Bolshoi-Kosmologie-Simulation einen großen Schritt vorwärts gemacht. Nach 6 Millionen CPU-Stunden warf der siebtschnellste Supercomputer der Welt viele wissenschaftliche Neuheiten aus, darunter die obige Flugsimulation. Ausgehend von der relativ gleichmäßigen Verteilung der Dunklen Materie im frühen Universum, die anhand des Mikrowellenhintergrundes und anderer großer Himmelsdatensätze feststellbar ist, folgte die Bolshoi-Simulation anhand des kosmologischen Standardmodells der Entwicklung des Universums bis zur oben gezeigten gegenwärtigen Epoche. Die hellen Punkte im obigen Video sind allesamt Knoten aus normalerweise unsichtbarer Dunkler Materie, von denen viele normale Galaxien enthalten. Lange Fasern und Galaxienhaufen, die gravitativ von Dunkler Materie beherrscht werden, werden treten hervor. Statistische Vergleiche zwischen Bolshoi und Himmelskarten aktueller Galaxien weisen eine gute Übereinstimmung auf. Obwohl die Bolshoi-Simulation das Vorhandensein Dunkler Materie stützt, bleiben viele Fragen zu unserem Universum offen, etwa die Zusammensetzung Dunkler Materie, die Natur der Dunklen Energie und wie sich die ersten Sterngenerationen und Galaxien gebildet haben.

Astrophysiker: Suchen Sie in der Astrophysics Source Code Library
Zur Originalseite